Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
J Phys Chem B. 2011 Jan 27;115(3):532-46. doi: 10.1021/jp106404u. Epub 2010 Dec 30.
By hindering or "silencing" protein translation in vivo, antisense nucleic acid analogues that hybridize to bacterial rRNA could serve as a promising class of antibacterial compounds. Thus, we performed a comparative analysis of the dynamical properties of modified oligonucleotides based upon a sequence (5')r(UGUUACGACU)(3') that is complementary to bacterial ribosomal A-site RNA. In particular, 25 ns explicit solvent molecular dynamics simulations were computed for the following six single-stranded decamers: (1) the above RNA in unmodified form; (2) the 2'-O-methyl-modified RNA; (3) peptide nucleic acid (PNA) analogues of the above sequence, containing either (a) T or (b) U; and (4) two serine-substituted PNAs. Our results show that 2'-O-methylation attenuates RNA backbone dynamics, thereby preventing interconversion between stacked and unstacked conformations. The PNA analogue is rendered less flexible by replacing uracil with thymine; in addition, we found that derivatizing the PNA backbone with serine leads to enhanced base-stacking interactions. Consistent with known solubility properties of these classes of molecules, both RNAs exhibited greater localization of water molecules than did PNA. In terms of counterions, the initially helical conformation of the 2'-O-methyl RNA exhibits the highest Na(+) density among all the simulated decamers, while Na(+) build-up was most negligible for the neutral PNA systems. Further studies of the conformational and physicochemical properties of such modified single-stranded oligomers may facilitate better design of nucleic acid analogues, particularly those capable of serving as specific, high-affinity ribosomal A-site binders.
通过在体内阻碍或“沉默”蛋白质翻译,与细菌 rRNA 杂交的反义核酸类似物可以作为一类有前途的抗菌化合物。因此,我们对基于与细菌核糖体 A 位 RNA 互补的序列(5')r(UGUUACGACU)(3')的修饰寡核苷酸的动力学特性进行了比较分析。特别是,对于以下六种单链十聚体,我们进行了 25 ns 的显式溶剂分子动力学模拟:(1)未修饰形式的上述 RNA;(2)2'-O-甲基修饰的 RNA;(3)上述序列的肽核酸(PNA)类似物,包含(a)T 或(b)U;以及(4)两种丝氨酸取代的 PNA。我们的结果表明,2'-O-甲基化会减弱 RNA 骨架的动力学,从而阻止堆叠和非堆叠构象之间的转换。用胸腺嘧啶替代尿嘧啶会使 PNA 类似物的柔韧性降低;此外,我们发现用丝氨酸修饰 PNA 骨架会导致增强的碱基堆积相互作用。与这些分子类别已知的溶解度特性一致,两种 RNA 都比 PNA 表现出更多的水分子定位。就抗衡离子而言,2'-O-甲基 RNA 的初始螺旋构象在所有模拟的十聚体中表现出最高的 Na(+)密度,而中性 PNA 系统中 Na(+)的积累最小。对这些修饰的单链寡聚物的构象和物理化学性质的进一步研究可能有助于更好地设计核酸类似物,特别是那些能够作为特异性、高亲和力核糖体 A 位结合物的类似物。