School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
J Phys Chem B. 2011 Feb 10;115(5):1038-44. doi: 10.1021/jp110002q. Epub 2010 Dec 31.
Enhanced hydrostatic pressure can induce phase transitions in hydrated lipid bilayers especially those composed of saturated phospholipids. In this work, the phase behavior of fully hydrated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and POPC (2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine) bilayers as a function of pressure up to 3000 atm has been examined in atomic detail on time scales of up to 1.0 μs, using the molecular dynamics simulation technique. DPPC bilayers formed a rippled gel-like phase comprising a minor disordered fluid-like region and a major ordered gel-like region at 1000 atm, a partially interdigitated gel-like phase at 2000 atm, and a gel-like phase with most of the lipid acyl chains tilted with respect to the plane of the bilayer at 3000 atm. POPC bilayers formed a rippled gel-like phase at 1800, 2400, and 3000 atm. The phase behavior observed for both DPPC and POPC bilayers is in agreement with experiment. The simulations provide insight into the structural changes of DPPC and POPC bilayers as a function of pressure and demonstrate the ability to model biologically relevant lipid systems under high hydrostatic pressure.
超高压能诱导水合脂质双层发生相转变,特别是那些由饱和磷脂组成的双层。在这项工作中,我们使用分子动力学模拟技术,在高达 3000 大气压的压力范围内,详细研究了完全水合 DPPC(1,2-二棕榈酰-sn-甘油-3-磷酸胆碱)和 POPC(2-油酰基-1-棕榈酰基-sn-甘油-3-磷酸胆碱)双层的相行为,时间尺度长达 1.0 μs。在 1000 大气压下,DPPC 双层形成了一种波纹状凝胶相,包括少量无序的流体状区域和大部分有序的凝胶状区域,在 2000 大气压下形成部分交错的凝胶相,在 3000 大气压下形成大部分脂质酰链相对于双层平面倾斜的凝胶相。POPC 双层在 1800、2400 和 3000 大气压下形成了波纹状凝胶相。DPPC 和 POPC 双层的相行为与实验结果一致。模拟为 DPPC 和 POPC 双层的压力依赖性结构变化提供了深入了解,并展示了在高压下模拟生物相关脂质系统的能力。