Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
J Theor Biol. 2011 Mar 21;273(1):72-9. doi: 10.1016/j.jtbi.2010.12.039. Epub 2010 Dec 31.
A novel mathematical model in the framework of a nonlinear integro-partial differential equation governing biofluids flow in fractured biomaterials is proposed, solved, verified, and evaluated. A semi-analytical solution is derived for the equation, verified by a mass-lumped Galerkin finite element method (FEM), and calibrated with two in vitro experimental datasets. The solution process uses separation of variables and results in explicit expression involving complete and incomplete beta functions. The proposed semi-analytical model shows reasonable agreements with the finite element simulator as well as with two in vitro experimental time series and can be successfully used to simulate biofluids (e.g. water, blood, oil, etc.) flow in natural and synthetic porous biomaterials.
提出并求解了一个新型的非线性积分偏微分方程数学模型,用于研究生物材料中的生物流体流动。推导了该方程的半解析解,并通过质量集中伽辽金有限元法(FEM)进行验证,同时用两个体外实验数据集进行了校准。该解决方案使用变量分离,得到了涉及完全和不完全β函数的显式表达式。所提出的半解析模型与有限元模拟器以及两个体外实验时间序列具有较好的一致性,可成功用于模拟天然和合成多孔生物材料中的生物流体(如水、血液、油等)流动。