Suppr超能文献

发夹核酶变体的设计,提高了对加工不良底物的活性。

Design of hairpin ribozyme variants with improved activity for poorly processed substrates.

机构信息

Max Planck Institute for Molecular Physiology, Department I, Dortmund, Germany  Ernst-Moritz-Arndt Universität Greifswald, Institut für Biochemie, Germany.

出版信息

FEBS J. 2011 Feb;278(4):622-33. doi: 10.1111/j.1742-4658.2010.07983.x. Epub 2010 Dec 24.

Abstract

Application of ribozymes for knockdown of RNA targets requires the identification of suitable target sites according to the consensus sequence. For the hairpin ribozyme, this was originally defined as Y⁻² N⁻¹ *G+¹ U+² Y+³ B+⁴, with Y = U or C, and B = U, C or G, and C being the preferred nucleobase at positions -2 and +4. In the context of development of ribozymes for destruction of an oncogenic mRNA, we have designed ribozyme variants that efficiently process RNA substrates at U⁻² G⁻¹ *G+¹ U+² A+³ A+⁴ sites. Substrates with G⁻¹ *G+¹ U+² A+³ sites were previously shown to be processed by the wild-type hairpin ribozyme. However, our study demonstrates that, in the specific sequence context of the substrate studied herein, compensatory base changes in the ribozyme improve activity for cleavage (eight-fold) and ligation (100-fold). In particular, we show that A+³ and A+⁴ are well tolerated if compensatory mutations are made at positions 6 and 7 of the ribozyme strand. Adenine at position +4 is neutralized by G⁶ →U, owing to restoration of a Watson-Crick base pair in helix 1. In this ribozyme-substrate complex, adenine at position +3 is also tolerated, with a slightly decreased cleavage rate. Additional substitution of A⁷ with uracil doubled the cleavage rate and restored ligation, which was lost in variants with A⁷, C⁷ and G⁷. The ability to cleave, in conjunction with the inability to ligate RNA, makes these ribozyme variants particularly suitable candidates for RNA destruction.

摘要

核酶用于 RNA 靶标的敲低需要根据保守序列识别合适的靶位点。对于发夹核酶,最初的定义是 Y⁻² N⁻¹ *G+¹ U+² Y+³ B+⁴,其中 Y 可以是 U 或 C,B 可以是 U、C 或 G,并且 C 是 -2 位和 +4 位的首选碱基。在开发用于破坏致癌 mRNA 的核酶的过程中,我们设计了核酶变体,这些变体能够有效地在 U⁻² G⁻¹ *G+¹ U+² A+³ A+⁴ 位点处理 RNA 底物。以前已经证明,具有 G⁻¹ *G+¹ U+² A+³ 位点的底物可以被野生型发夹核酶处理。然而,我们的研究表明,在本文研究的底物的特定序列背景下,核酶中的补偿碱基变化可提高切割(8 倍)和连接(100 倍)的活性。特别是,我们表明,如果在核酶链的 6 位和 7 位进行补偿突变,A+³ 和 A+⁴ 可以很好地耐受。由于在 1 号螺旋中恢复了 Watson-Crick 碱基对,+4 位的腺嘌呤被 G⁶ →U 中和。在这种核酶-底物复合物中,+3 位的腺嘌呤也可以耐受,切割速率略有降低。用尿嘧啶替代 A⁷ 可将切割速率提高一倍,并恢复在 A⁷、C⁷ 和 G⁷ 变体中丢失的连接。这些核酶变体既能切割,又不能连接 RNA,因此特别适合用于 RNA 破坏。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验