Suppr超能文献

胶质母细胞瘤中的分子改变:免疫治疗的潜在靶点。

Molecular alterations in glioblastoma: potential targets for immunotherapy.

机构信息

Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA.

出版信息

Prog Mol Biol Transl Sci. 2011;98:187-234. doi: 10.1016/B978-0-12-385506-0.00005-3.

Abstract

Glioblastoma is the most common and deadly brain tumor, possibly arising from genetic and epigenetic alterations in normal astroglial cells. Multiple cytogenetic, chromosomal, and genetic alterations have been identified in glioblastoma, with distinct expression of antigens (Ags) and biomarkers that may alter therapeutic potential of this aggressive cancer. Current therapy consists of surgical resection, followed by radiation therapy and chemotherapy. In spite of these treatments, the prognosis for glioblastoma patients is poor. Although recent studies have focused on the development of novel immunotherapeutics against glioblastoma, little is known about glioblastoma-specific immune responses. A better understanding of the molecular interactions among glioblastoma tumors, host immune cells, and the tumor microenvironment may give rise to novel integrated approaches for the simultaneous control of tumor escape pathways and the activation of antitumor immune responses. This review provides a detailed overview concerning genetic alterations in glioblastoma, their effects on Ag and biomarker expression, and the future design of chemoimmunotherapeutics against glioblastoma.

摘要

胶质母细胞瘤是最常见和最致命的脑肿瘤,可能起源于正常星形胶质细胞的遗传和表观遗传改变。在胶质母细胞瘤中已经确定了多种细胞遗传学、染色体和遗传改变,具有不同的抗原(Ag)和生物标志物表达,这可能改变这种侵袭性癌症的治疗潜力。目前的治疗包括手术切除,然后是放射治疗和化疗。尽管进行了这些治疗,胶质母细胞瘤患者的预后仍然很差。尽管最近的研究集中在开发针对胶质母细胞瘤的新型免疫疗法上,但对胶质母细胞瘤特异性免疫反应知之甚少。更好地了解胶质母细胞瘤肿瘤、宿主免疫细胞和肿瘤微环境之间的分子相互作用,可能会产生针对肿瘤逃逸途径的同时控制和抗肿瘤免疫反应的激活的新型综合方法。这篇综述详细概述了胶质母细胞瘤的遗传改变、它们对 Ag 和生物标志物表达的影响,以及针对胶质母细胞瘤的化学免疫治疗的未来设计。

相似文献

1
Molecular alterations in glioblastoma: potential targets for immunotherapy.
Prog Mol Biol Transl Sci. 2011;98:187-234. doi: 10.1016/B978-0-12-385506-0.00005-3.
2
Current Immunotherapies for Glioblastoma Multiforme.
Front Immunol. 2021 Mar 9;11:603911. doi: 10.3389/fimmu.2020.603911. eCollection 2020.
3
Current State of Immune-Based Therapies for Glioblastoma.
Am Soc Clin Oncol Educ Book. 2016;35:e132-9. doi: 10.1200/EDBK_159084.
4
Advances in Experimental Targeted Therapy and Immunotherapy for Patients with Glioblastoma Multiforme.
Anticancer Res. 2017 Jan;37(1):21-33. doi: 10.21873/anticanres.11285.
5
The Dynamics of Interactions Among Immune and Glioblastoma Cells.
Neuromolecular Med. 2015 Dec;17(4):335-52. doi: 10.1007/s12017-015-8362-x. Epub 2015 Jul 30.
6
Personalized neoantigen vaccines: a glimmer of hope for glioblastoma.
Expert Rev Vaccines. 2020 May;19(5):407-417. doi: 10.1080/14760584.2020.1750376. Epub 2020 Apr 17.
7
New perspectives in glioma immunotherapy.
Curr Pharm Des. 2011;17(23):2439-67. doi: 10.2174/138161211797249206.
8
Emerging immunotherapies for glioblastoma.
Expert Opin Emerg Drugs. 2016 Jun;21(2):133-45. doi: 10.1080/14728214.2016.1186643.
9
[What's next in glioblastoma treatment: Tumor-targeted or immune-targeted therapies?].
Bull Cancer. 2016 May;103(5):484-98. doi: 10.1016/j.bulcan.2016.02.014. Epub 2016 Mar 28.
10
Enhancing dendritic cell-based vaccination for highly aggressive glioblastoma.
Expert Opin Biol Ther. 2015 Jan;15(1):79-94. doi: 10.1517/14712598.2015.972361. Epub 2014 Oct 18.

引用本文的文献

2
AAV-based vectors for human diseases modeling in laboratory animals.
Front Med (Lausanne). 2025 Feb 12;11:1499605. doi: 10.3389/fmed.2024.1499605. eCollection 2024.
3
Genomic, epigenomic and transcriptomic landscape of glioblastoma.
Metab Brain Dis. 2024 Dec;39(8):1591-1611. doi: 10.1007/s11011-024-01414-8. Epub 2024 Aug 24.
6
LC-MS/MS Estimation of the Anti-Cancer Agent Tandutinib Levels in Human Liver Microsomes: Metabolic Stability Evaluation Assay.
Drug Des Devel Ther. 2020 Oct 23;14:4439-4449. doi: 10.2147/DDDT.S274118. eCollection 2020.
7
Anti-neoplastic Potential of Flavonoids and Polysaccharide Phytochemicals in Glioblastoma.
Molecules. 2020 Oct 23;25(21):4895. doi: 10.3390/molecules25214895.
8
Association Between Genetic Polymorphisms In And Glioma Risk In Chinese Patients: A Case-Control Study.
Onco Targets Ther. 2019 Oct 7;12:8241-8247. doi: 10.2147/OTT.S221204. eCollection 2019.
10
Immunophenotypic signature of primary glioblastoma multiforme: A case of extended progression free survival.
World J Clin Cases. 2017 Jun 16;5(6):247-253. doi: 10.12998/wjcc.v5.i6.247.

本文引用的文献

1
HLA Class II Antigen Presentation in Prostate Cancer Cells: A Novel Approach to Prostate Tumor Immunotherapy.
Open Cancer Immunol J. 2010 Jan 1;3:1-7. doi: 10.2174/1876401001003010001.
2
GDF-15 contributes to proliferation and immune escape of malignant gliomas.
Clin Cancer Res. 2010 Aug 1;16(15):3851-9. doi: 10.1158/1078-0432.CCR-10-0705. Epub 2010 Jun 9.
3
Pattern of retinoblastoma pathway inactivation dictates response to CDK4/6 inhibition in GBM.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11501-6. doi: 10.1073/pnas.1001613107. Epub 2010 Jun 7.
7
Role of angiopoietin-2 in regulating growth and vascularity of astrocytomas.
J Oncol. 2010;2010:659231. doi: 10.1155/2010/659231. Epub 2010 May 11.
9
Potential therapeutic implications of cancer stem cells in glioblastoma.
Biochem Pharmacol. 2010 Sep 1;80(5):654-65. doi: 10.1016/j.bcp.2010.04.035. Epub 2010 May 10.
10
Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma.
CA Cancer J Clin. 2010 May-Jun;60(3):166-93. doi: 10.3322/caac.20069.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验