United States Dairy Forage Research Center, Agricultural Research Service, United States Department of Agriculture, Madison, Wisconsin 53706, USA.
Plant Physiol. 2011 Mar;155(3):1060-7. doi: 10.1104/pp.110.166793. Epub 2011 Jan 4.
In red clover (Trifolium pratense) leaves, phaselic acid (2-O-caffeoyl-L-malate) accumulates to several mmol kg(-1) fresh weight and is a crucial component of a natural system that prevents protein breakdown during harvest and storage of this forage crop. Previously, we identified HCT2, a red clover gene encoding a hydroxycinnamoyl-Coenzyme A (CoA) hydroxycinnamoyl transferase capable of transferring p-coumaroyl and caffeoyl moieties from their CoA derivatives to malic acid to form the corresponding hydroxycinnamoyl-malate esters in vitro. Here, we carried out a detailed kinetic analysis of the enzyme and examined its in vivo function in red clover via reverse genetics. The kinetic analysis indicates that in vitro, despite similar Km values for the tested hydroxycinnamoyl-CoA derivatives, HCT2 favors transfer to malate of p-coumaroyl and feruloyl moieties over caffeoyl moieties by greater than 5-fold. Reverse reaction (transfer of hydroxycinnamoyl moieties from malate to CoA) by HCT2 was observed with p-coumaroyl-malate but not phaselic acid. Analysis of red clover plants down-regulated for HCT2 expression via RNA interference showed a significant and substantial correlation between HCT2 mRNA levels and phaselic acid accumulation (P<0.005). In several of the HCT2-silenced plants, phaselic acid and p-coumaroyl-malate levels were reduced to <5% that of wild-type controls. These reductions resulted in easily observable phenotypes including reduced polyphenol oxidase-mediated browning and a reduction in blue epidermal fluorescence under ultraviolet light. These results demonstrate a crucial role for HCT2 in phaselic acid accumulation in red clover and define a previously undescribed pathway for the biosynthesis of hydroxycinnamoyl-malate esters in plants.
在红三叶草(Trifolium pratense)叶片中,苯并酸(2-O-咖啡酰-L-苹果酸)积累到几毫摩尔每千克(mmol kg(-1))鲜重,是一种天然系统的关键组成部分,可防止该饲料作物在收获和储存期间蛋白质的分解。以前,我们鉴定了红三叶草基因 HCT2,它编码一种羟基肉桂酰辅酶 A(CoA)羟基肉桂酰转移酶,能够在体外将对香豆酰基和咖啡酰基部分从它们的 CoA 衍生物转移到苹果酸上,形成相应的羟基肉桂酰-苹果酸酯。在这里,我们对该酶进行了详细的动力学分析,并通过反向遗传学研究了其在红三叶草中的体内功能。动力学分析表明,在体外,尽管测试的羟基肉桂酰 CoA 衍生物的 Km 值相似,但 HCT2 更有利于对香豆酰基和阿魏酰基部分而不是咖啡酰基部分向苹果酸的转移,其比例大于 5 倍。HCT2 观察到与对香豆酰基苹果酸的反向反应(即羟基肉桂酰部分从苹果酸转移到 CoA),但不能与苯并酸反应。通过 RNA 干扰对 HCT2 表达下调的红三叶草植物进行分析表明,HCT2 mRNA 水平与苯并酸积累之间存在显著且实质性的相关性(P<0.005)。在几个 HCT2 沉默的植物中,苯并酸和对香豆酰基苹果酸的水平降低到野生型对照的 5%以下。这些减少导致了明显的表型,包括多酚氧化酶介导的褐变减少和在紫外线照射下蓝色表皮荧光减少。这些结果表明 HCT2 在红三叶草中苯并酸积累中起着关键作用,并定义了植物中羟基肉桂酰-苹果酸酯生物合成的一个以前未描述的途径。