Suppr超能文献

通过种间传播从鹿朊病毒生成新型人类 PrP(Sc)。

Generation of a new form of human PrP(Sc) in vitro by interspecies transmission from cervid prions.

机构信息

Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas 77030, USA.

出版信息

J Biol Chem. 2011 Mar 4;286(9):7490-5. doi: 10.1074/jbc.M110.198465. Epub 2011 Jan 5.

Abstract

Prion diseases are infectious neurodegenerative disorders that affect humans and animals and that result from the conversion of normal prion protein (PrP(C)) into the misfolded prion protein (PrP(Sc)). Chronic wasting disease (CWD) is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. Determining the risk of transmission of CWD to humans is of utmost importance, considering that people can be infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrP(C) can be converted into the misfolded form by CWD PrP(Sc), we performed experiments using the protein misfolding cyclic amplification technique, which mimics in vitro the process of prion replication. Our results show that cervid PrP(Sc) can induce the conversion of human PrP(C) but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, the newly generated human PrP(Sc) exhibits a distinct biochemical pattern that differs from that of any of the currently known forms of human PrP(Sc). Our results also have profound implications for understanding the mechanisms of the prion species barrier and indicate that the transmission barrier is a dynamic process that depends on the strain and moreover the degree of adaptation of the strain. If our findings are corroborated by infectivity assays, they will imply that CWD prions have the potential to infect humans and that this ability progressively increases with CWD spreading.

摘要

朊病毒病是一种传染性神经退行性疾病,影响人类和动物,是由正常朊病毒蛋白(PrP(C))转化为错误折叠的朊病毒蛋白(PrP(Sc))引起的。慢性消耗病(CWD)是美国一种日益流行的朊病毒疾病,影响了大量野生和圈养的鹿和麋鹿。鉴于人类可以被动物朊病毒感染,从而导致新的致命疾病,因此确定 CWD 向人类传播的风险至关重要。为了研究 CWD PrP(Sc)是否可能使人类 PrP(C)转化为错误折叠形式,我们使用蛋白错误折叠循环扩增技术进行了实验,该技术模拟了体外朊病毒复制的过程。我们的结果表明,鹿科动物 PrP(Sc)可以诱导人类 PrP(C)的转化,但前提是 CWD 朊病毒株已经通过体外或体内连续传代而稳定下来。有趣的是,新生成的人类 PrP(Sc)表现出与任何已知形式的人类 PrP(Sc)都不同的独特生化模式。我们的结果还对理解朊病毒种间屏障的机制具有深远的意义,并表明传播屏障是一个动态过程,取决于毒株,而且还取决于毒株的适应程度。如果我们的发现得到感染性测定的证实,它们将意味着 CWD 朊病毒有可能感染人类,并且这种能力随着 CWD 的传播而逐渐增加。

相似文献

1
Generation of a new form of human PrP(Sc) in vitro by interspecies transmission from cervid prions.
J Biol Chem. 2011 Mar 4;286(9):7490-5. doi: 10.1074/jbc.M110.198465. Epub 2011 Jan 5.
3
Generation of human chronic wasting disease in transgenic mice.
Acta Neuropathol Commun. 2021 Sep 26;9(1):158. doi: 10.1186/s40478-021-01262-y.
4
Host Determinants of Prion Strain Diversity Independent of Prion Protein Genotype.
J Virol. 2015 Oct;89(20):10427-41. doi: 10.1128/JVI.01586-15. Epub 2015 Aug 5.
5
Deer Prion Proteins Modulate the Emergence and Adaptation of Chronic Wasting Disease Strains.
J Virol. 2015 Dec;89(24):12362-73. doi: 10.1128/JVI.02010-15. Epub 2015 Sep 30.
6
Generation of a Unique Cervid Prion Strain Using Protein Misfolding Cyclic Amplification.
mSphere. 2017 Jan 25;2(1). doi: 10.1128/mSphere.00372-16. eCollection 2017 Jan-Feb.
7
Primary structural differences at residue 226 of deer and elk PrP dictate selection of distinct CWD prion strains in gene-targeted mice.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12478-12487. doi: 10.1073/pnas.1903947116. Epub 2019 May 30.
8
Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis.
Int J Mol Sci. 2021 Feb 25;22(5):2271. doi: 10.3390/ijms22052271.
9
Heterozygosity for cervid S138N polymorphism results in subclinical CWD in gene-targeted mice and progressive inhibition of prion conversion.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2221060120. doi: 10.1073/pnas.2221060120. Epub 2023 Apr 4.

引用本文的文献

1
The molecular determinants of a universal prion acceptor.
PLoS Pathog. 2024 Sep 10;20(9):e1012538. doi: 10.1371/journal.ppat.1012538. eCollection 2024 Sep.
3
Extraneural infection route restricts prion conformational variability and attenuates the impact of quaternary structure on infectivity.
PLoS Pathog. 2024 Jul 8;20(7):e1012370. doi: 10.1371/journal.ppat.1012370. eCollection 2024 Jul.
4
Chronic Wasting Disease: State of the Science.
Pathogens. 2024 Feb 2;13(2):138. doi: 10.3390/pathogens13020138.
5
Propagation of PrP in mice reveals impact of aggregate composition on prion disease pathogenesis.
Commun Biol. 2023 Nov 14;6(1):1162. doi: 10.1038/s42003-023-05541-3.
6
Genetic modulation of CWD prion propagation in cervid PrP Drosophila.
Biochem J. 2023 Oct 11;480(19):1485-1501. doi: 10.1042/BCJ20230247.
7
Oral vaccination as a potential strategy to manage chronic wasting disease in wild cervid populations.
Front Immunol. 2023 Apr 14;14:1156451. doi: 10.3389/fimmu.2023.1156451. eCollection 2023.
8
New developments in prion disease research using genetically modified mouse models.
Cell Tissue Res. 2023 Apr;392(1):33-46. doi: 10.1007/s00441-023-03761-x. Epub 2023 Mar 17.
9
The Zoonotic Potential of Chronic Wasting Disease-A Review.
Foods. 2023 Feb 15;12(4):824. doi: 10.3390/foods12040824.
10
Vaccines for prion diseases: a realistic goal?
Cell Tissue Res. 2023 Apr;392(1):367-392. doi: 10.1007/s00441-023-03749-7. Epub 2023 Feb 11.

本文引用的文献

1
Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein.
J Gen Virol. 2010 Oct;91(Pt 10):2651-7. doi: 10.1099/vir.0.024380-0. Epub 2010 Jul 7.
2
Prion strain mutation determined by prion protein conformational compatibility and primary structure.
Science. 2010 May 28;328(5982):1154-8. doi: 10.1126/science.1187107. Epub 2010 May 13.
3
Susceptibilities of nonhuman primates to chronic wasting disease.
Emerg Infect Dis. 2009 Sep;15(9):1366-76. doi: 10.3201/eid1509.090253.
4
De novo generation of infectious prions in vitro produces a new disease phenotype.
PLoS Pathog. 2009 May;5(5):e1000421. doi: 10.1371/journal.ppat.1000421. Epub 2009 May 15.
5
Trans-species amplification of PrP(CWD) and correlation with rigid loop 170N.
Virology. 2009 Apr 25;387(1):235-43. doi: 10.1016/j.virol.2009.02.025. Epub 2009 Mar 9.
6
In vitro amplification of PrPSc derived from the brain and blood of sheep infected with scrapie.
J Gen Virol. 2008 Dec;89(Pt 12):3177-3184. doi: 10.1099/vir.0.2008/004226-0.
7
Effects of human PrPSc type and PRNP genotype in an in-vitro conversion assay.
Neuroreport. 2008 Dec 3;19(18):1783-6. doi: 10.1097/WNR.0b013e328318edfa.
8
In vitro strain adaptation of CWD prions by serial protein misfolding cyclic amplification.
Virology. 2008 Dec 20;382(2):267-76. doi: 10.1016/j.virol.2008.09.023. Epub 2008 Oct 25.
9
Cell-free propagation of prion strains.
EMBO J. 2008 Oct 8;27(19):2557-66. doi: 10.1038/emboj.2008.181. Epub 2008 Sep 18.
10
Crossing the species barrier by PrP(Sc) replication in vitro generates unique infectious prions.
Cell. 2008 Sep 5;134(5):757-68. doi: 10.1016/j.cell.2008.07.030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验