Suppr超能文献

载脂蛋白 A-I(ApoA-I)的羧基末端对于无脂载脂蛋白 A-I 的运输是必需的,但对于预酯化的 ApoA-I 颗粒则不是必需的,可以通过主动脉内皮细胞。

Carboxyl terminus of apolipoprotein A-I (ApoA-I) is necessary for the transport of lipid-free ApoA-I but not prelipidated ApoA-I particles through aortic endothelial cells.

机构信息

From the Institute of Clinical Chemistry, University Hospital of Zurich, 8091 Zurich, Switzerland,; the Competence Center for Systems Physiology and Metabolic Diseases, ETH and University of Zurich, 8091 Zurich, Switzerland.

From the Institute of Clinical Chemistry, University Hospital of Zurich, 8091 Zurich, Switzerland,; the Center for Integrative Human Physiology, University of Zurich, 8091 Zurich, Switzerland.

出版信息

J Biol Chem. 2011 Mar 11;286(10):7744-7754. doi: 10.1074/jbc.M110.193524. Epub 2011 Jan 5.

Abstract

High density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) must leave the circulation and pass the endothelium to exert their atheroprotective actions in the arterial wall. We previously demonstrated that the transendothelial transport of apoA-I involves ATP-binding cassette transporter (ABC) A1 and re-secretion of lipidated particles. Transendothelial transport of HDL is modulated by ABCG1 and the scavenger receptor BI (SR-BI). We hypothesize that apoA-I transport is started by the ABCA1-mediated generation of a lipidated particle which is then transported by ABCA1-independent pathways. To test this hypothesis we analyzed the endothelial binding and transport properties of initially lipid-free as well as prelipidated apoA-I mutants. Lipid-free apoA-I mutants with a defective carboxyl-terminal domain showed an 80% decreased specific binding and 90% decreased specific transport by aortic endothelial cells. After prior cell-free lipidation of the mutants, the resulting HDL-like particles were transported through endothelial cells by an ABCG1- and SR-BI-dependent process. ApoA-I mutants with deletions of either the amino terminus or both the amino and carboxyl termini showed dramatic increases in nonspecific binding but no specific binding or transport. Prior cell-free lipidation did not rescue these anomalies. Our findings of stringent structure-function relationships underline the specificity of transendothelial apoA-I transport and suggest that lipidation of initially lipid-free apoA-I is necessary but not sufficient for specific transendothelial transport. Our data also support the model of a two-step process for the transendothelial transport of apoA-I in which apoA-I is initially lipidated by ABCA1 and then further processed by ABCA1-independent mechanisms.

摘要

高密度脂蛋白 (HDL) 和载脂蛋白 A-I (apoA-I) 必须离开循环系统并穿过内皮细胞,才能在动脉壁中发挥其抗动脉粥样硬化作用。我们之前的研究表明,apoA-I 的跨内皮转运涉及 ATP 结合盒转运蛋白 (ABC) A1 和脂质化颗粒的再分泌。HDL 的跨内皮转运受 ABCG1 和清道夫受体 BI (SR-BI) 调节。我们假设 apoA-I 的转运是由 ABCA1 介导的脂质化颗粒的生成开始的,然后通过 ABCA1 非依赖性途径进行转运。为了验证这一假设,我们分析了最初无脂质和预脂质化 apoA-I 突变体的内皮结合和转运特性。具有缺陷羧基末端结构域的无脂质 apoA-I 突变体与主动脉内皮细胞的特异性结合减少了 80%,特异性转运减少了 90%。突变体在细胞外脂质化后,生成的 HDL 样颗粒通过 ABCG1 和 SR-BI 依赖性途径在内皮细胞中转运。缺失氨基末端或氨基末端和羧基末端的 apoA-I 突变体的非特异性结合显著增加,但无特异性结合或转运。细胞外脂质化不能挽救这些异常。我们严格的结构-功能关系的研究结果强调了跨内皮 apoA-I 转运的特异性,并表明最初无脂质的 apoA-I 的脂质化对于特异性跨内皮转运是必要的,但不是充分的。我们的数据还支持 apoA-I 跨内皮转运的两步模型,其中 apoA-I 首先被 ABCA1 脂质化,然后通过 ABCA1 非依赖性机制进一步加工。

相似文献

2
Lipidation of apolipoprotein A-I by ATP-binding cassette transporter (ABC) A1 generates an interaction partner for ABCG1 but not for scavenger receptor BI.
Biochim Biophys Acta. 2008 Jun-Jul;1781(6-7):306-13. doi: 10.1016/j.bbalip.2008.04.006. Epub 2008 Apr 26.
3
High-density lipoprotein-mediated transcellular cholesterol transport in mouse aortic endothelial cells.
Biochem Biophys Res Commun. 2015 Sep 18;465(2):256-61. doi: 10.1016/j.bbrc.2015.08.011. Epub 2015 Aug 7.
4
The β-chain of cell surface F(0)F(1) ATPase modulates apoA-I and HDL transcytosis through aortic endothelial cells.
Arterioscler Thromb Vasc Biol. 2012 Jan;32(1):131-9. doi: 10.1161/ATVBAHA.111.238063. Epub 2011 Oct 6.
5
Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL.
J Mol Med (Berl). 2006 Apr;84(4):276-94. doi: 10.1007/s00109-005-0030-4. Epub 2006 Feb 25.
6
ATP-Binding cassette transporter A1 modulates apolipoprotein A-I transcytosis through aortic endothelial cells.
Circ Res. 2006 Nov 10;99(10):1060-6. doi: 10.1161/01.RES.0000250567.17569.b3. Epub 2006 Oct 19.
7
Adipocyte modulation of high-density lipoprotein cholesterol.
Circulation. 2010 Mar 23;121(11):1347-55. doi: 10.1161/CIRCULATIONAHA.109.897330. Epub 2010 Mar 8.

引用本文的文献

1
The Endothelium Is Both a Target and a Barrier of HDL's Protective Functions.
Cells. 2021 Apr 28;10(5):1041. doi: 10.3390/cells10051041.
2
VEGF-B signaling impairs endothelial glucose transcytosis by decreasing membrane cholesterol content.
EMBO Rep. 2020 Jul 3;21(7):e49343. doi: 10.15252/embr.201949343. Epub 2020 May 24.
3
HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic β-cells in vitro by activation of Smoothened.
J Lipid Res. 2020 Apr;61(4):492-504. doi: 10.1194/jlr.RA119000509. Epub 2020 Jan 6.
4
Structure-function relationships of HDL in diabetes and coronary heart disease.
JCI Insight. 2020 Jan 16;5(1):131491. doi: 10.1172/jci.insight.131491.
6
Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties.
Arterioscler Thromb Vasc Biol. 2016 Feb;36(2):274-84. doi: 10.1161/ATVBAHA.115.306827. Epub 2015 Dec 17.
7
ATP Synthase β-Chain Overexpression in SR-BI Knockout Mice Increases HDL Uptake and Reduces Plasma HDL Level.
Int J Endocrinol. 2014;2014:356432. doi: 10.1155/2014/356432. Epub 2014 Jul 10.
8
Apolipoprotein M modulates erythrocyte efflux and tubular reabsorption of sphingosine-1-phosphate.
J Lipid Res. 2014 Aug;55(8):1730-7. doi: 10.1194/jlr.M050021. Epub 2014 Jun 20.
9
Lymphatic transport of high-density lipoproteins and chylomicrons.
J Clin Invest. 2014 Mar;124(3):929-35. doi: 10.1172/JCI71610. Epub 2014 Mar 3.
10
Significance of the hydrophobic residues 225-230 of apoA-I for the biogenesis of HDL.
J Lipid Res. 2013 Dec;54(12):3293-302. doi: 10.1194/jlr.M043489. Epub 2013 Oct 12.

本文引用的文献

2
High-density lipoprotein and coronary heart disease: current and future therapies.
J Am Coll Cardiol. 2010 Mar 30;55(13):1283-99. doi: 10.1016/j.jacc.2010.01.008.
3
Implications of torcetrapib failure for the future of HDL therapy: is HDL-cholesterol the right target?
Expert Rev Cardiovasc Ther. 2010 Mar;8(3):345-58. doi: 10.1586/erc.10.6.
5
Transendothelial lipoprotein transport and regulation of endothelial permeability and integrity by lipoproteins.
Curr Opin Lipidol. 2009 Jun;20(3):197-205. doi: 10.1097/MOL.0b013e32832afd63.
6
7
Retroendocytosis pathway of ABCA1/apoA-I contributes to HDL formation.
Genes Cells. 2009 Feb;14(2):191-204. doi: 10.1111/j.1365-2443.2008.01261.x. Epub 2008 Jan 6.
8
Three-dimensional models of HDL apoA-I: implications for its assembly and function.
J Lipid Res. 2008 Sep;49(9):1875-83. doi: 10.1194/jlr.R800010-JLR200. Epub 2008 May 30.
9
Lipidation of apolipoprotein A-I by ATP-binding cassette transporter (ABC) A1 generates an interaction partner for ABCG1 but not for scavenger receptor BI.
Biochim Biophys Acta. 2008 Jun-Jul;1781(6-7):306-13. doi: 10.1016/j.bbalip.2008.04.006. Epub 2008 Apr 26.
10
HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis.
Cell Metab. 2008 May;7(5):365-75. doi: 10.1016/j.cmet.2008.03.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验