Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, PR China.
Chemistry. 2011 Jan 17;17(3):1040-51. doi: 10.1002/chem.201001151. Epub 2010 Nov 16.
Herein we present a systematic study of the structures and magnetic properties of six coordination compounds with mixed azide and zwitterionic carboxylate ligands, [M(N(3) )(2) (2-mpc)] (2-mpc=N-methylpyridinium-2-carboxylate; M=Co for 1 and Mn for 2), [M(N(3) )(2) (4-mpc)] (4-mpc=N-methylpyridinium-4-carboxylate; M=Co for 3 and Mn for 4), [Co(3) (N(3) )(6) (3-mpc)(2) (CH(3) OH)(2) ] (5), and [Mn(3) (N(3) )(6) (3-mpc)(2) ] (6; 3-mpc=N-methylpyridinium-3-carboxylate). Compounds 1-3 consist of one-dimensional uniform chains with (μ-EO-N(3) )(2) (μ-COO) triple bridges (EO=end-on); 5 is also a chain compound but with alternating [(μ-EO-N(3) )(2) (μ-COO)] triple and [(EO-N(3) )(2) ] double bridges; Compound 4 contains two-dimensional layers with alternating [(μ-EO-N(3) )(2) (μ-COO)] triple, [(μ-EO-N(3) )(μ-COO)] double, and (EE-N(3) ) single bridges (EE=end-to-end); 6 is a layer compound in which chains similar to those in 5 are cross-linked by a μ(3) -1,1,3-N(3) azido group. Magnetically, the three Co(II) compounds (1, 3, and 5) all exhibit intrachain ferromagnetic interactions but show distinct bulk properties: 1 displays relaxation dynamics at very low temperature, 3 is an antiferromagnet with field-induced metamagnetism due to weak antiferromagnetic interchain interactions, and 5 behaves as a noninnocent single-chain magnet influenced by weak antiferromagnetic interchain interactions. The magnetic differences can be related to the interchain interactions through π-π stacking influenced by different substitution positions in the ligands and/or different magnitudes of intrachain coupling. All of the Mn(II) compounds show overall intrachain/intralayer antiferromagnetic interactions. Compound 2 shows the usual one-dimensional antiferromagnetism, whereas 4 and 6 exhibit different weak ferromagnetism due to spin canting below 13.8 and 4.6 K, respectively.
在此,我们呈现了对六个具有混合叠氮化物和两性离子羧酸酯配体的配位化合物的结构和磁性的系统研究,[M(N(3) )(2) (2-mpc)](2-mpc=N-甲基吡啶-2-羧酸酯;M=Co(1)和 Mn(2)),[M(N(3) )(2) (4-mpc)](4-mpc=N-甲基吡啶-4-羧酸酯;M=Co(3)和 Mn(4)),[Co(3) (N(3) )(6) (3-mpc)(2) (CH(3) OH)(2) ](5)和[Mn(3) (N(3) )(6) (3-mpc)(2) ](6;3-mpc=N-甲基吡啶-3-羧酸酯)。化合物 1-3 由一维均匀链组成,具有(μ-EO-N(3) )(2)(μ-COO)三重桥(EO=端对端);5 也是一个链状化合物,但具有交替的[(μ-EO-N(3) )(2) (μ-COO)]三重和[(EO-N(3) )(2) ]双键桥;化合物 4 含有二维层,具有交替的[(μ-EO-N(3) )(2) (μ-COO)]三重、[(μ-EO-N(3) )(μ-COO)]双键和(EE-N(3) )单键(EE=端对端);6 是一个层状化合物,其中类似于 5 中的链通过μ(3) -1,1,3-N(3) 叠氮基团交联。在磁性方面,三个 Co(II)化合物(1、3 和 5)都表现出链内铁磁相互作用,但表现出明显的体相性质:1 在非常低的温度下显示弛豫动力学,3 是由于弱反铁磁链间相互作用导致的场诱导变磁反铁磁体,而 5 作为受弱反铁磁链间相互作用影响的非无辜单链磁体。这些磁性差异可以通过配体中不同取代位置和/或链内耦合强度的不同,通过π-π堆积影响的链间相互作用来解释。所有的 Mn(II)化合物都表现出整体的链内/层内反铁磁相互作用。化合物 2 表现出通常的一维反铁磁性,而 4 和 6 分别由于低于 13.8 和 4.6 K 的自旋倾斜而表现出不同的弱铁磁性。