SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom.
Phys Rev Lett. 2010 Dec 31;105(26):267205. doi: 10.1103/PhysRevLett.105.267205. Epub 2010 Dec 30.
We investigate the nonequilibrium behavior of the spin-ice Dy2Ti2O7 by studying its magnetization as a function of the field sweep rate. Below the enigmatic ''freezing'' temperature T(equil)≈600 mK, we find that even the slowest sweeps fail to yield the equilibrium magnetization curve and instead give an initially much flatter curve. For higher sweep rates, the magnetization develops sharp steps accompanied by similarly sharp peaks in the temperature of the sample. We ascribe the former behavior to the energy barriers encountered in the magnetization process, which proceeds via flipping of spins on filaments traced out by the field-driven motion of the gapped, long-range interacting magnetic monopole excitations. The peaks in temperature result from the released Zeeman energy not being carried away efficiently; the resulting heating triggers a chain reaction.
我们通过研究其磁化强度随磁场扫描速率的变化来研究自旋冰 Dy2Ti2O7 的非平衡行为。在神秘的“冻结”温度 T(equil)≈600 mK 以下,我们发现即使是最慢的扫描也无法得到平衡磁化曲线,而是给出了一个初始更平坦的曲线。对于更高的扫描速率,磁化强度会出现急剧的阶跃,同时样品的温度也会出现类似的急剧峰值。我们将前一种行为归因于磁化过程中遇到的能量势垒,该过程通过在由带隙、长程相互作用的磁单极子激发的场驱动运动中追踪的细丝上翻转自旋来进行。温度峰值是由于释放的塞曼能没有被有效地带走;由此产生的加热引发了连锁反应。