Suppr超能文献

自动键级分配作为一个优化问题。

Automated bond order assignment as an optimization problem.

机构信息

Center for Bioinformatics, Saarland University, Saarbrücken, Germany.

出版信息

Bioinformatics. 2011 Mar 1;27(5):619-25. doi: 10.1093/bioinformatics/btq718. Epub 2011 Jan 17.

Abstract

MOTIVATION

Numerous applications in Computational Biology process molecular structures and hence strongly rely not only on correct atomic coordinates but also on correct bond order information. For proteins and nucleic acids, bond orders can be easily deduced but this does not hold for other types of molecules like ligands. For ligands, bond order information is not always provided in molecular databases and thus a variety of approaches tackling this problem have been developed. In this work, we extend an ansatz proposed by Wang et al. that assigns connectivity-based penalty scores and tries to heuristically approximate its optimum. In this work, we present three efficient and exact solvers for the problem replacing the heuristic approximation scheme of the original approach: an A*, an ILP and an fixed-parameter approach (FPT) approach.

RESULTS

We implemented and evaluated the original implementation, our A*, ILP and FPT formulation on the MMFF94 validation suite and the KEGG Drug database. We show the benefit of computing exact solutions of the penalty minimization problem and the additional gain when computing all optimal (or even suboptimal) solutions. We close with a detailed comparison of our methods.

AVAILABILITY

The A* and ILP solution are integrated into the open-source C++ LGPL library BALL and the molecular visualization and modelling tool BALLView and can be downloaded from our homepage www.ball-project.org. The FPT implementation can be downloaded from http://bio.informatik.uni-jena.de/software/.

摘要

动机

计算生物学中的许多应用程序处理分子结构,因此不仅强烈依赖于正确的原子坐标,还依赖于正确的键序信息。对于蛋白质和核酸,可以轻松推导出键序,但对于其他类型的分子(如配体)则不行。对于配体,分子数据库中并不总是提供键序信息,因此已经开发了多种解决此问题的方法。在这项工作中,我们扩展了 Wang 等人提出的一种方法,该方法分配基于连接性的惩罚分数,并尝试启发式地逼近其最优值。在这项工作中,我们提出了三种有效的精确求解器来解决该问题,取代了原始方法的启发式逼近方案:A*、ILP 和固定参数方法(FPT)。

结果

我们在 MMFF94 验证套件和 KEGG 药物数据库上实现并评估了原始实现、我们的 A*、ILP 和 FPT 公式。我们展示了计算惩罚最小化问题的精确解的好处,以及计算所有最优(甚至次优)解的额外收益。最后,我们对我们的方法进行了详细比较。

可用性

A*和 ILP 解决方案已集成到开源 C++ LGPL 库 BALL 中,以及分子可视化和建模工具 BALLView 中,并可从我们的主页 www.ball-project.org 下载。FPT 实现可从 http://bio.informatik.uni-jena.de/software/ 下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验