Protein and Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
J Pharm Sci. 2011 Jun;100(6):2267-77. doi: 10.1002/jps.22461. Epub 2011 Jan 18.
The failure of the clinical treatment of cancer patients is often attributed to drug resistance of the tumor to chemotherapeutic agents. P-glycoprotein (P-gp) contributes to drug resistance via adenosine 5'-triphosphate (ATP)-dependent drug efflux pumps and is widely expressed in many human cancers. Up to date, a few of nanomaterials have shown the effects on P-gp function by different ways. To study the mechanism of the increased cytotoxicity of doxorubicin (DOX) by pegylated phosphotidylethanolamine (PEG-PE) in drug-resistant cancer cells, a series of in vitro cell assays were performed, including identification of P-gp function, quantitative studies on uptake and efflux of DOX, inhibitory effects of blank PEG-PE micelles on mRNA and protein levels of P-gp, and intracellular ATP content alteration. Finally, combining MDR-1 RNA interference (siRNA) with DOX encapsulated in PEG-PE micelles (M-DOX) to improve cytotoxicity of DOX was also studied. M-DOX showed fivefold lower the concentration that caused 50% killing tumor cell than that of free DOX in the P-gp-overexpressing MCF-7 breast cancer (MCF-7/ADR) cells. M-DOX enhanced the cellular uptake and retention of DOX in MCF-7/ADR cells. PEG-PE block molecules can inhibit P-gp expression through downregulating MDR-1 gene. Cytotoxicity of M-DOX was further improved by knocking down the MDR-1 gene using siRNA in the multidrug-resistant cells. We conclude that the increased cytotoxicity of DOX encapsulated in PEG-PE micelle is due to the reduced P-gp expression by PEG-PE block molecules, and accordingly enhancing the cellular accumulation of DOX. To overcome drug resistance of tumor cells, the combination of nanotechnology and biotechnology could be an effective strategy such as PEG-PE formed micelles and siRNA.
癌症患者临床治疗的失败往往归因于肿瘤对化疗药物的耐药性。P-糖蛋白(P-gp)通过三磷酸腺苷(ATP)依赖性药物外排泵促进药物耐药性,并广泛表达于许多人类癌症中。迄今为止,已有少数几种纳米材料通过不同方式显示出对 P-gp 功能的影响。为了研究聚乙二醇化磷脂酰乙醇胺(PEG-PE)增加耐药性癌细胞中阿霉素(DOX)细胞毒性的机制,进行了一系列体外细胞实验,包括鉴定 P-gp 功能、定量研究 DOX 的摄取和外排、空白 PEG-PE 胶束对 P-gp mRNA 和蛋白水平的抑制作用以及细胞内 ATP 含量的改变。最后,还研究了将 MDR-1 RNA 干扰(siRNA)与包封在 PEG-PE 胶束中的 DOX(M-DOX)结合以提高 DOX 的细胞毒性。与游离 DOX 相比,M-DOX 在 P-gp 过表达 MCF-7 乳腺癌(MCF-7/ADR)细胞中引起 50%杀伤肿瘤细胞的浓度低五倍。M-DOX 增强了 DOX 在 MCF-7/ADR 细胞中的细胞摄取和保留。PEG-PE 封端分子可通过下调 MDR-1 基因抑制 P-gp 表达。在多药耐药细胞中使用 siRNA 敲低 MDR-1 基因可进一步提高 M-DOX 的细胞毒性。我们得出结论,包封在 PEG-PE 胶束中的 DOX 的细胞毒性增加是由于 PEG-PE 封端分子降低了 P-gp 表达,从而增强了 DOX 的细胞内积累。为了克服肿瘤细胞的耐药性,纳米技术和生物技术的结合可能是一种有效的策略,例如 PEG-PE 形成的胶束和 siRNA。