Brezhestovskiĭ P D
Ross Fiziol Zh Im I M Sechenova. 2010 Sep;96(9):841-60.
Synapses are highly organized, specific structures assuring rapid and highly selective interactions between cells. Synaptic transmission involves the release of neurotransmitter from presynaptic neurons and its detection by specific ligand-gated ion channels at the surface membrane of postsynaptic neurons. The protenomic analysis shows that for self-formation and functioning of synapses nearly 2000 proteins are involved in mammalian brain. The core complex in excitatory synapses includes glutamate receptors, potassium channels, CaMKII, scaffolding protein and actin. These proteins exist as part of a highly organized protein complex known as the postsynaptic density (PSD). The coordinated functioning of the different PSD components determines the strength of signalling between the pre- and postsynaptic neurons. Synaptic plasticity is regulated by changes in the amount of receptors on the postsynaptic membrane, changes in the shape and size of dendritic spines, posttranslational modification of PSD components, modulation kinetics of synthesis and degradation of proteins. Integration of these processes leads to long-lasting changes in synaptic function and neuronal networks underlying learning-related plasticity, memory and information treatment in nervous system of multicellular organisms.
突触是高度有组织的特定结构,可确保细胞之间快速且高度选择性的相互作用。突触传递涉及突触前神经元释放神经递质以及突触后神经元表面膜上特定配体门控离子通道对其进行检测。蛋白质组学分析表明,哺乳动物大脑中近2000种蛋白质参与突触的自我形成和功能。兴奋性突触中的核心复合体包括谷氨酸受体、钾通道、钙/钙调蛋白依赖性蛋白激酶II、支架蛋白和肌动蛋白。这些蛋白质作为一种高度有组织的蛋白质复合体即突触后致密物(PSD)的一部分而存在。不同PSD成分的协同功能决定了突触前和突触后神经元之间信号传递的强度。突触可塑性受突触后膜上受体数量的变化、树突棘形状和大小的变化、PSD成分的翻译后修饰、蛋白质合成和降解的调节动力学的调控。这些过程的整合导致突触功能和神经网络的持久变化,这些变化是多细胞生物体神经系统中与学习相关的可塑性、记忆和信息处理的基础。