Suppr超能文献

黑猩猩和猩猩三腿肌群组中纤维类型的分布模式。

Distribution patterns of fibre types in the triceps surae muscle group of chimpanzees and orangutans.

机构信息

School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.

出版信息

J Anat. 2011 Apr;218(4):402-12. doi: 10.1111/j.1469-7580.2010.01338.x. Epub 2011 Jan 23.

Abstract

Different locomotor and postural demands are met partly due to the varying properties and proportions of the muscle fibre types within the skeletal muscles. Such data are therefore important in understanding the subtle relationships between morphology, function and behaviour. The triceps surae muscle group is of particular interest when studying our closest living relatives, the non-human great apes, as they lack a significant external Achilles tendon, crucial to running locomotion in humans and other cursorial species. The aim of this study, therefore, was to determine the proportions of type I (slow) and type II (fast) fibres throughout these muscles in chimpanzees and orangutans using immunohistochemistry. The orangutan had a higher proportion of type I fibres in all muscles compared with the chimpanzees, related to their slower, more controlled movements in their arboreal habitat. The higher proportion of type II fibres in the chimpanzees likely reflects a compromise between their need for controlled mobility when arboreal, and greater speed and power when terrestrial. Overall, the proportion of slow fibres was greater in the soleus muscle compared with the gastrocnemius muscles, and there was some evidence of proximal to distal and medial to lateral variations within some muscles. This study has shown that not only do orangutans and chimpanzees have very different muscle fibre populations that reflect their locomotor repertoires, but it also shows how the proportion of fibre types provides an additional mechanism by which the performance of a muscle can be modulated to suit the needs of a species.

摘要

不同的运动和姿势需求部分是由于骨骼肌肉中肌纤维类型的不同特性和比例所满足的。因此,这些数据对于理解形态、功能和行为之间的微妙关系非常重要。当研究我们最亲近的灵长类动物——非人类的大猿时,小腿三头肌特别有趣,因为它们缺乏人类和其他奔跑物种中至关重要的外部跟腱。因此,本研究的目的是使用免疫组织化学方法确定黑猩猩和猩猩这些肌肉中 I 型(慢)和 II 型(快)纤维的比例。与在树上生活的猩猩相比,猩猩在所有肌肉中都有更高比例的 I 型纤维,这与它们在树栖环境中缓慢、更受控制的运动有关。在黑猩猩中,II 型纤维的比例较高,可能反映了它们在树栖时需要控制移动的能力,以及在陆地时需要更快和更大的速度和力量之间的妥协。总的来说,与比目鱼肌相比,腓肠肌中的慢肌纤维比例更高,一些肌肉中存在近端到远端和内侧到外侧的变化。这项研究表明,猩猩和黑猩猩不仅拥有非常不同的肌纤维群体,反映了它们的运动能力,而且还表明纤维类型的比例提供了一种额外的机制,通过这种机制可以调节肌肉的性能,以适应物种的需求。

相似文献

1
Distribution patterns of fibre types in the triceps surae muscle group of chimpanzees and orangutans.
J Anat. 2011 Apr;218(4):402-12. doi: 10.1111/j.1469-7580.2010.01338.x. Epub 2011 Jan 23.
2
Dimensions of forelimb muscles in orangutans and chimpanzees.
J Anat. 2009 Oct;215(4):373-82. doi: 10.1111/j.1469-7580.2009.01125.x. Epub 2009 Jul 9.
5
Rotator cuff muscle function and its relation to scapular morphology in apes.
J Hum Evol. 2013 Oct;65(4):391-403. doi: 10.1016/j.jhevol.2013.07.010. Epub 2013 Aug 19.
7
Great ape origins of personality maturation and sex differences: a study of orangutans and chimpanzees.
J Pers Soc Psychol. 2015 Apr;108(4):648-64. doi: 10.1037/pspp0000022. Epub 2014 Nov 17.
9
Abnormality in fibre type distribution of soleus and plantaris muscles in non-obese diabetic Goto-Kakizaki rats.
Clin Exp Pharmacol Physiol. 2002 Nov;29(11):1001-8. doi: 10.1046/j.1440-1681.2002.03757.x.

引用本文的文献

1
Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment.
Theranostics. 2025 Jan 1;15(2):560-584. doi: 10.7150/thno.103491. eCollection 2025.
2
The evolution of human fatigue resistance.
J Comp Physiol B. 2022 Jul;192(3-4):411-422. doi: 10.1007/s00360-022-01439-4. Epub 2022 May 12.
4
Chronic Undernutrition Differentially Changes Muscle Fiber Types Organization and Distribution in the EDL Muscle Fascicles.
Front Physiol. 2020 Jul 23;11:777. doi: 10.3389/fphys.2020.00777. eCollection 2020.
6
Fiber type composition of epaxial muscles is geared toward facilitating rapid spinal extension in the leaper Galago senegalensis.
Am J Phys Anthropol. 2018 May;166(1):95-106. doi: 10.1002/ajpa.23405. Epub 2018 Jan 10.
9
Functional adaptations in the forelimb muscles of non-human great apes.
J Anat. 2012 Jan;220(1):13-28. doi: 10.1111/j.1469-7580.2011.01443.x. Epub 2011 Oct 30.
10
Hindlimb muscle architecture in non-human great apes and a comparison of methods for analysing inter-species variation.
J Anat. 2011 Aug;219(2):150-66. doi: 10.1111/j.1469-7580.2011.01383.x. Epub 2011 Apr 20.

本文引用的文献

1
Muscle moment arms of the gibbon hind limb: implications for hylobatid locomotion.
J Anat. 2010 Apr;216(4):446-62. doi: 10.1111/j.1469-7580.2009.01209.x.
2
Comparative analysis of muscle architecture in primate arm and forearm.
Anat Histol Embryol. 2010 Apr;39(2):93-106. doi: 10.1111/j.1439-0264.2009.00986.x. Epub 2009 Dec 3.
3
Differentiation between deep and superficial fibers of the lumbar multifidus by magnetic resonance imaging.
Eur Spine J. 2010 Jan;19(1):122-8. doi: 10.1007/s00586-009-1171-x. Epub 2009 Sep 24.
4
Mechanical constraints on the functional morphology of the gibbon hind limb.
J Anat. 2009 Oct;215(4):383-400. doi: 10.1111/j.1469-7580.2009.01123.x. Epub 2009 Jul 15.
5
Functional anatomy of the gibbon forelimb: adaptations to a brachiating lifestyle.
J Anat. 2009 Sep;215(3):335-54. doi: 10.1111/j.1469-7580.2009.01109.x. Epub 2009 Jun 10.
7
Functional morphology of the ankle and the likelihood of climbing in early hominins.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6567-72. doi: 10.1073/pnas.0900270106. Epub 2009 Apr 13.
8
Scaling of muscle architecture and fiber types in the rat hindlimb.
J Exp Biol. 2008 Jul;211(Pt 14):2336-45. doi: 10.1242/jeb.017640.
9
Simultaneous inference in general parametric models.
Biom J. 2008 Jun;50(3):346-63. doi: 10.1002/bimj.200810425.
10
Muscle architecture of the upper limb in the orangutan.
Primates. 2008 Jul;49(3):204-9. doi: 10.1007/s10329-008-0082-5. Epub 2008 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验