Department of Biomedical Engineering, University of Texas, Austin, Texas 78712, USA.
J Phys Chem B. 2011 Feb 17;115(6):1491-502. doi: 10.1021/jp1073522. Epub 2011 Jan 25.
The up-regulation of JNK activity is associated with a number of disease states. The JNK-JIP1 interaction represents an attractive target for the inhibition of JNK-mediated signaling. In this study, molecular dynamics simulations have been performed on the apo-JNK1 and the JNK1•L-pepJIP1 and JNK1•D-pepJIP1 complexes to investigate the interaction between the JIP1 peptides and JNK1. Dynamic domain studies based on essential dynamics (ED) analysis of apo-JNK1 and the JNK1•L-pepJIP1 complex have been performed to analyze and compare details of conformational changes, hinge axes, and hinge bending regions in both structures. The activation loop, the αC helix, and the G loop are found to be highly flexible and to exhibit significant changes in dynamics upon L-pepJIP1 binding. The conformation of the activation loop for the apo state is similar to that of inactive apo-ERK2, while the activation loop in JNK1•L-pepJIP1 complex resembles that of the inactive ERK2 bound with pepHePTP. ED analysis shows that, after the binding of l-pepJIP1, the N- and C-terminal domains of JNK1 display both a closure and a twisting motion centered around the activation loop, which functions as a hinge. In contrast, no domain motion is detected for the apo state for which an open conformation is favored. The present study suggests that L-pepJIP1 regulates the interdomain motions of JNK1 and potentially the active site via an allosteric mechanism. The binding free energies of L-pepJIP1 and D-pepJIP1 to JNK1 are estimated using the molecular mechanics Poisson-Boltzmann and generalized-Born surface area (MM-PB/GBSA) methods. The contribution of each residue at the interaction interface to the binding affinity of L-pepJIP1 with JNK1 has been analyzed by means of computational alanine-scanning mutagenesis and free energy decomposition. Several critical interactions for binding (e.g., Arg156/L-pepJIP1 and Glu329/JNK1) have been identified. The binding free energy calculation indicates that the electrostatic interaction contributes critically to specificity, rather than to binding affinity between the peptide and JNK1. Notably, the binding free energy calculations predict that D-pepJIP1 binding to JNK1 is significantly weaker than the L form, contradicting the previous suggestion that D-pepJIP1 acts as an inhibitor toward JNK1. We have performed experiments using purified JNK1 to confirm that, indeed, D-pepJIP1 does not inhibit the ability of JNK1 to phosphorylate c-Jun in vitro.
JNK 活性的上调与许多疾病状态有关。JNK-JIP1 相互作用代表了抑制 JNK 介导的信号转导的有吸引力的靶标。在这项研究中,对 apo-JNK1 和 JNK1•L-pepJIP1 和 JNK1•D-pepJIP1 复合物进行了分子动力学模拟,以研究 JIP1 肽与 JNK1 之间的相互作用。基于 apo-JNK1 和 JNK1•L-pepJIP1 复合物的本征动力学(ED)分析,进行了动态域研究,以分析和比较两种结构中构象变化、铰链轴和铰链弯曲区域的细节。发现激活环、αC 螺旋和 G 环高度灵活,并在与 L-pepJIP1 结合时表现出显著的动力学变化。apo 状态下激活环的构象类似于无活性 apo-ERK2 的构象,而 JNK1•L-pepJIP1 复合物中的激活环类似于与 pepHePTP 结合的无活性 ERK2 的构象。ED 分析表明,在 L-pepJIP1 结合后,JNK1 的 N 和 C 末端结构域显示出围绕激活环的闭合和扭曲运动,该激活环充当铰链。相比之下,对于 apo 状态,未检测到结构域运动,而这种状态有利于开放构象。本研究表明,L-pepJIP1 通过别构机制调节 JNK1 的结构域运动,并可能调节活性位点。使用分子力学泊松-玻尔兹曼和广义 Born 表面面积(MM-PB/GBSA)方法估算了 L-pepJIP1 和 D-pepJIP1 与 JNK1 的结合自由能。通过计算丙氨酸扫描诱变和自由能分解,分析了相互作用界面上每个残基对 L-pepJIP1 与 JNK1 结合亲和力的贡献。确定了几个关键的结合相互作用(例如,Arg156/L-pepJIP1 和 Glu329/JNK1)。结合自由能计算表明,静电相互作用对特异性至关重要,而不是肽与 JNK1 之间的结合亲和力。值得注意的是,结合自由能计算预测 D-pepJIP1 与 JNK1 的结合能力明显弱于 L 形式,这与之前关于 D-pepJIP1 作为 JNK1 抑制剂的观点相矛盾。我们使用纯化的 JNK1 进行了实验,以证实 D-pepJIP1 确实不会抑制 JNK1 在体外磷酸化 c-Jun 的能力。