Suppr超能文献

了解 JNK1 和支架蛋白 JIP1 之间对接相互作用的特异性。

Understanding the specificity of a docking interaction between JNK1 and the scaffolding protein JIP1.

机构信息

Department of Biomedical Engineering, University of Texas, Austin, Texas 78712, USA.

出版信息

J Phys Chem B. 2011 Feb 17;115(6):1491-502. doi: 10.1021/jp1073522. Epub 2011 Jan 25.

Abstract

The up-regulation of JNK activity is associated with a number of disease states. The JNK-JIP1 interaction represents an attractive target for the inhibition of JNK-mediated signaling. In this study, molecular dynamics simulations have been performed on the apo-JNK1 and the JNK1•L-pepJIP1 and JNK1•D-pepJIP1 complexes to investigate the interaction between the JIP1 peptides and JNK1. Dynamic domain studies based on essential dynamics (ED) analysis of apo-JNK1 and the JNK1•L-pepJIP1 complex have been performed to analyze and compare details of conformational changes, hinge axes, and hinge bending regions in both structures. The activation loop, the αC helix, and the G loop are found to be highly flexible and to exhibit significant changes in dynamics upon L-pepJIP1 binding. The conformation of the activation loop for the apo state is similar to that of inactive apo-ERK2, while the activation loop in JNK1•L-pepJIP1 complex resembles that of the inactive ERK2 bound with pepHePTP. ED analysis shows that, after the binding of l-pepJIP1, the N- and C-terminal domains of JNK1 display both a closure and a twisting motion centered around the activation loop, which functions as a hinge. In contrast, no domain motion is detected for the apo state for which an open conformation is favored. The present study suggests that L-pepJIP1 regulates the interdomain motions of JNK1 and potentially the active site via an allosteric mechanism. The binding free energies of L-pepJIP1 and D-pepJIP1 to JNK1 are estimated using the molecular mechanics Poisson-Boltzmann and generalized-Born surface area (MM-PB/GBSA) methods. The contribution of each residue at the interaction interface to the binding affinity of L-pepJIP1 with JNK1 has been analyzed by means of computational alanine-scanning mutagenesis and free energy decomposition. Several critical interactions for binding (e.g., Arg156/L-pepJIP1 and Glu329/JNK1) have been identified. The binding free energy calculation indicates that the electrostatic interaction contributes critically to specificity, rather than to binding affinity between the peptide and JNK1. Notably, the binding free energy calculations predict that D-pepJIP1 binding to JNK1 is significantly weaker than the L form, contradicting the previous suggestion that D-pepJIP1 acts as an inhibitor toward JNK1. We have performed experiments using purified JNK1 to confirm that, indeed, D-pepJIP1 does not inhibit the ability of JNK1 to phosphorylate c-Jun in vitro.

摘要

JNK 活性的上调与许多疾病状态有关。JNK-JIP1 相互作用代表了抑制 JNK 介导的信号转导的有吸引力的靶标。在这项研究中,对 apo-JNK1 和 JNK1•L-pepJIP1 和 JNK1•D-pepJIP1 复合物进行了分子动力学模拟,以研究 JIP1 肽与 JNK1 之间的相互作用。基于 apo-JNK1 和 JNK1•L-pepJIP1 复合物的本征动力学(ED)分析,进行了动态域研究,以分析和比较两种结构中构象变化、铰链轴和铰链弯曲区域的细节。发现激活环、αC 螺旋和 G 环高度灵活,并在与 L-pepJIP1 结合时表现出显著的动力学变化。apo 状态下激活环的构象类似于无活性 apo-ERK2 的构象,而 JNK1•L-pepJIP1 复合物中的激活环类似于与 pepHePTP 结合的无活性 ERK2 的构象。ED 分析表明,在 L-pepJIP1 结合后,JNK1 的 N 和 C 末端结构域显示出围绕激活环的闭合和扭曲运动,该激活环充当铰链。相比之下,对于 apo 状态,未检测到结构域运动,而这种状态有利于开放构象。本研究表明,L-pepJIP1 通过别构机制调节 JNK1 的结构域运动,并可能调节活性位点。使用分子力学泊松-玻尔兹曼和广义 Born 表面面积(MM-PB/GBSA)方法估算了 L-pepJIP1 和 D-pepJIP1 与 JNK1 的结合自由能。通过计算丙氨酸扫描诱变和自由能分解,分析了相互作用界面上每个残基对 L-pepJIP1 与 JNK1 结合亲和力的贡献。确定了几个关键的结合相互作用(例如,Arg156/L-pepJIP1 和 Glu329/JNK1)。结合自由能计算表明,静电相互作用对特异性至关重要,而不是肽与 JNK1 之间的结合亲和力。值得注意的是,结合自由能计算预测 D-pepJIP1 与 JNK1 的结合能力明显弱于 L 形式,这与之前关于 D-pepJIP1 作为 JNK1 抑制剂的观点相矛盾。我们使用纯化的 JNK1 进行了实验,以证实 D-pepJIP1 确实不会抑制 JNK1 在体外磷酸化 c-Jun 的能力。

相似文献

1
Understanding the specificity of a docking interaction between JNK1 and the scaffolding protein JIP1.
J Phys Chem B. 2011 Feb 17;115(6):1491-502. doi: 10.1021/jp1073522. Epub 2011 Jan 25.
2
Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125.
EMBO J. 2004 Jun 2;23(11):2185-95. doi: 10.1038/sj.emboj.7600212. Epub 2004 May 13.
3
Bipartite binding of the intrinsically disordered scaffold protein JIP1 to the kinase JNK1.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2419915122. doi: 10.1073/pnas.2419915122. Epub 2025 Feb 25.
5
Inhibitor design against JNK1 through e-pharmacophore modeling docking and molecular dynamics simulations.
J Recept Signal Transduct Res. 2016 Dec;36(6):558-571. doi: 10.3109/10799893.2016.1141955. Epub 2016 Feb 24.
7
Structural mechanisms of allostery and autoinhibition in JNK family kinases.
Structure. 2012 Dec 5;20(12):2174-84. doi: 10.1016/j.str.2012.09.021. Epub 2012 Nov 8.
8
Characterization of a novel JNK (c-Jun N-terminal kinase) inhibitory peptide.
Biochem J. 2011 Mar 15;434(3):399-413. doi: 10.1042/BJ20101244.
9
The docking properties of SHIP2 influence both JIP1 tyrosine phosphorylation and JNK activity.
Cell Signal. 2008 Aug;20(8):1432-41. doi: 10.1016/j.cellsig.2008.03.010. Epub 2008 Mar 26.
10
A molecular dynamics study of the binary complexes of APP, JIP1, and the cargo binding domain of KLC.
Proteins. 2017 Feb;85(2):221-234. doi: 10.1002/prot.25208. Epub 2016 Nov 28.

引用本文的文献

1
Identification and biochemical characterization of small molecule inhibitors of ERK2 that target the D-recruitment site.
Methods Enzymol. 2023;690:445-499. doi: 10.1016/bs.mie.2023.06.016. Epub 2023 Aug 2.
2
Arrestin-3-Dependent Activation of c-Jun N-Terminal Kinases (JNKs).
Curr Protoc. 2023 Sep;3(9):e839. doi: 10.1002/cpz1.839.
3
Modulating multi-functional ERK complexes by covalent targeting of a recruitment site in vivo.
Nat Commun. 2019 Nov 19;10(1):5232. doi: 10.1038/s41467-019-12996-8.
4
A Novel Class of Common Docking Domain Inhibitors That Prevent ERK2 Activation and Substrate Phosphorylation.
ACS Chem Biol. 2019 Jun 21;14(6):1183-1194. doi: 10.1021/acschembio.9b00093. Epub 2019 May 13.
6
New insights into the structural dynamics of the kinase JNK3.
Sci Rep. 2018 Jun 21;8(1):9435. doi: 10.1038/s41598-018-27867-3.
7
Co-conserved MAPK features couple D-domain docking groove to distal allosteric sites via the C-terminal flanking tail.
PLoS One. 2015 Mar 23;10(3):e0119636. doi: 10.1371/journal.pone.0119636. eCollection 2015.
8
Arrestin-3-Dependent Activation of c-Jun N-Terminal Kinases (JNKs).
Curr Protoc Pharmacol. 2015 Mar 2;68:2.12.1-2.12.26. doi: 10.1002/0471141755.ph0212s68.
9
Identification and validation of novel PERK inhibitors.
J Chem Inf Model. 2014 May 27;54(5):1467-75. doi: 10.1021/ci500114r. Epub 2014 May 5.
10
Diamidine compounds for selective inhibition of protein arginine methyltransferase 1.
J Med Chem. 2014 Mar 27;57(6):2611-22. doi: 10.1021/jm401884z. Epub 2014 Mar 6.

本文引用的文献

3
Ligand-induced global transitions in the catalytic domain of protein kinase A.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3023-8. doi: 10.1073/pnas.0813266106. Epub 2009 Feb 9.
4
Optimization of 4,6-bis-anilino-1H-pyrrolo[2,3-d]pyrimidine IGF-1R tyrosine kinase inhibitors towards JNK selectivity.
Bioorg Med Chem Lett. 2009 Jan 15;19(2):360-4. doi: 10.1016/j.bmcl.2008.11.077. Epub 2008 Nov 24.
7
Molecular insight into the interaction between IFABP and PA by using MM-PBSA and alanine scanning methods.
J Phys Chem B. 2007 Aug 2;111(30):9104-13. doi: 10.1021/jp0713763. Epub 2007 Jun 29.
9
Computational alanine scanning mutagenesis--an improved methodological approach.
J Comput Chem. 2007 Feb;28(3):644-54. doi: 10.1002/jcc.20566.
10
A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo.
Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1828-35. doi: 10.1152/ajpheart.01117.2006. Epub 2006 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验