Department of Pharmacology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0575, USA.
Physiol Genomics. 2011 Apr 12;43(7):357-64. doi: 10.1152/physiolgenomics.00032.2010. Epub 2011 Jan 25.
Phospholamban (PLN), the reversible inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), is a key regulator of myocyte Ca(2+) cycling with a significant role in heart failure. We previously showed that the single amino acid difference between human and mouse PLN results in increased inhibition of Ca(2+) cycling and cardiac remodeling and attenuated stress responses in transgenic mice expressing the human PLN (hPLN) in the null background. Here we dissect the molecular and electrophysiological processes triggered by the superinhibitory hPLN in the mouse. Using a multidisciplinary approach, we performed global gene expression analysis, electrophysiology, and mathematical simulations on hPLN mice. We identified significant changes in a series of Na(+) and K(+) homeostasis genes/proteins (including Kcnd2, Scn9a, Slc8a1) and ionic conductance (including L-type Ca(2+) current, Na(+)/Ca(2+) exchanger, transient outward K(+) current). Simulation analysis suggests that this electrical remodeling has a critical role in rescuing cardiac function by improving sarcoplasmic reticulum Ca(2+) load and overall Ca(2+) dynamics. Furthermore, multiple structural and transcription factor gene expression changes indicate an ongoing structural remodeling process, favoring hypertrophy and myogenesis while suppressing apoptosis and progression to heart failure. Our findings expand current understanding of the hPLN function and provide additional insights into the downstream implications of SERCA2a superinhibition in the mammalian heart.
肌浆网磷蛋白(PLN)是肌浆网(endo)钙 ATP 酶(SERCA2a)的可逆抑制剂,是肌细胞钙循环的关键调节因子,在心力衰竭中具有重要作用。我们之前的研究表明,人 PLN 和鼠 PLN 之间的单个氨基酸差异导致钙循环和心脏重构的抑制增加,以及在表达人 PLN(hPLN)的转基因小鼠中应激反应减弱,这些小鼠的背景是 PLN 缺失。在这里,我们在小鼠中剖析了由超抑制 hPLN 触发的分子和电生理过程。我们使用多学科方法,对 hPLN 小鼠进行了全基因组表达分析、电生理学和数学模拟。我们发现了一系列 Na(+)和 K(+)稳态基因/蛋白(包括 Kcnd2、Scn9a、Slc8a1)和离子电导(包括 L 型 Ca(2+)电流、Na(+)/Ca(2+)交换体、瞬时外向 K(+)电流)的显著变化。模拟分析表明,这种电重构通过改善肌浆网 Ca(2+)负荷和整体 Ca(2+)动力学,对挽救心脏功能具有关键作用。此外,多种结构和转录因子基因表达变化表明存在持续的结构重塑过程,有利于肥大和肌生成,同时抑制细胞凋亡和进展为心力衰竭。我们的发现扩展了对 hPLN 功能的现有理解,并为哺乳动物心脏中 SERCA2a 超抑制的下游影响提供了更多的见解。