Department of Chemistry, The University of Alabama, Shelby Hall, Box 870336, Tuscaloosa, Alabama 35487-0336, USA.
Inorg Chem. 2011 Mar 7;50(5):1914-25. doi: 10.1021/ic102310v. Epub 2011 Jan 27.
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes.
使用耦合簇理论(包括单激发和双激发项,并包含微扰三体力修正项 CCSD(T)),结合相关一致基组(CCSD(T)/CBS 结合能外推至完全基组极限),对中性和离子态 N(x)F(y)和 O(x)F(y)体系的 0 K 下的原子化能和 0 和 298 K 下的生成焓进行了预测。为了达到接近化学精度(±1 kcal/mol),在冻结核 CCSD(T)/CBS 结合能的基础上,对电子能进行了三项修正:对核价电子、标量相对论和一阶原子自旋轨道效应的修正。在可能的情况下,使用 CCSD(T)理论计算了振动零点能。计算得到的生成焓与现有的实验值吻合良好,除了 FOOF 以外,这是因为忽略了更高阶相关修正。N(x)F(y)系列中 F(+)的亲和能从 N(2)增加到 N(2)F(4)为 63 kcal/mol,而 O(2)F(y)系列中则从 O(2)减少到 O(2)F(2)减少 18 kcal/mol。N(2)和 N(2)F(4)都不会与 F(-)结合,N(2)F(2)是一种非常弱的路易斯酸,对顺式或反式异构体的 F(-)亲和能约为 10 kcal/mol。氮氟化物的低 F(-)亲和能解释了为什么尽管已经知道许多稳定的氮氟化物阳离子,但到目前为止还没有分离出氮氟化物阴离子。例如,预测 NF 的 F(-)亲和能仅为 12.5 kcal/mol,这就解释了为什么从众所周知的强酸 HNF(2)中制备 NF(2)(-)盐的实验屡屡失败。O(2)的 F(-)亲和能预测为正值且略有增加,对于 O(2)F(2)则增加 23 kcal/mol,这表明 O(2)F(3)(-)阴离子在亚环境温度下可能略微稳定。考虑到许多实验值是垂直过程,计算得到的绝热电离势和电子亲和能与实验值吻合良好。