Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, USA.
J Am Coll Cardiol. 2011 Feb 1;57(5):612-8. doi: 10.1016/j.jacc.2010.08.643.
The aim of this study was to compare the accuracy of genetic tables and formal pharmacogenetic algorithms for warfarin dosing.
Pharmacogenetic algorithms based on regression equations can predict warfarin dose, but they require detailed mathematical calculations. A simpler alternative, recently added to the warfarin label by the U.S. Food and Drug Administration, is to use genotype-stratified tables to estimate warfarin dose. This table may potentially increase the use of pharmacogenetic warfarin dosing in clinical practice; however, its accuracy has not been quantified.
A retrospective cohort study of 1,378 patients from 3 anticoagulation centers was conducted. Inclusion criteria were stable therapeutic warfarin dose and complete genetic and clinical data. Five dose prediction methods were compared: 2 methods using only clinical information (empiric 5 mg/day dosing and a formal clinical algorithm), 2 genetic tables (the new warfarin label table and a table based on mean dose stratified by genotype), and 1 formal pharmacogenetic algorithm, using both clinical and genetic information. For each method, the proportion of patients whose predicted doses were within 20% of their actual therapeutic doses was determined. Dosing methods were compared using McNemar's chi-square test.
Warfarin dose prediction was significantly more accurate (all p < 0.001) with the pharmacogenetic algorithm (52%) than with all other methods: empiric dosing (37%; odds ratio [OR]: 2.2), clinical algorithm (39%; OR: 2.2), warfarin label (43%; OR: 1.8), and genotype mean dose table (44%; OR: 1.9).
Although genetic tables predicted warfarin dose better than empiric dosing, formal pharmacogenetic algorithms were the most accurate.
本研究旨在比较基因表和正式药物基因组学算法在华法林剂量预测中的准确性。
基于回归方程的药物基因组学算法可以预测华法林的剂量,但需要详细的数学计算。最近,美国食品和药物管理局在华法林标签中添加了一种更简单的替代方法,即使用基因分型表来估计华法林的剂量。这种表可能会增加在临床实践中使用药物基因组学华法林剂量的可能性;然而,其准确性尚未量化。
对来自 3 个抗凝中心的 1378 例患者进行了回顾性队列研究。纳入标准为稳定的治疗性华法林剂量和完整的遗传和临床数据。比较了 5 种剂量预测方法:仅使用临床信息的 2 种方法(经验性 5mg/天剂量和正式临床算法)、2 种基因表(新的华法林标签表和基于基因型分层平均剂量的表)和 1 种正式的药物基因组学算法,同时使用临床和遗传信息。对于每种方法,确定其预测剂量与实际治疗剂量相差 20%的患者比例。使用 McNemar 卡方检验比较不同的剂量方法。
药物基因组学算法(52%)预测华法林剂量明显比其他所有方法更准确(均 P<0.001):经验性剂量(37%;优势比[OR]:2.2)、临床算法(39%;OR:2.2)、华法林标签(43%;OR:1.8)和基因型平均剂量表(44%;OR:1.9)。
尽管基因表比经验性剂量预测华法林剂量更好,但正式的药物基因组学算法更准确。