Dipartimento di Scienze e Tecnologie Biomediche, Universita' di Udine, Piazzale Kolbe 4, 33100 Udine, Italy.
Proteins. 2011 Mar;79(3):986-1001. doi: 10.1002/prot.22940. Epub 2010 Dec 22.
β₂-Microglobulin has been a model system for the study of fibril formation for 20 years. The experimental study of β₂-microglobulin structure, dynamics, and thermodynamics in solution, at atomic detail, along the pathway leading to fibril formation is difficult because the onset of disorder and aggregation prevents signal resolution in Nuclear Magnetic Resonance experiments. Moreover, it is difficult to characterize conformers in exchange equilibrium. To gain insight (at atomic level) on processes for which experimental information is available at molecular or supramolecular level, molecular dynamics simulations have been widely used in the last decade. Here, we use molecular dynamics to address three key aspects of β₂-microglobulin, which are known to be relevant to amyloid formation: (1) 60 ns molecular dynamics simulations of β₂-microglobulin in trifluoroethanol and in conditions mimicking low pH are used to study the behavior of the protein in environmental conditions that are able to trigger amyloid formation; (2) adaptive biasing force molecular dynamics simulation is used to force cis-trans isomerization at Proline 32 and to calculate the relative free energy in the folded and unfolded state. The native-like trans-conformer (known as intermediate 2 and determining the slow phase of refolding), is simulated for 10 ns, detailing the possible link between cis-trans isomerization and conformational disorder; (3) molecular dynamics simulation of highly concentrated doxycycline (a molecule able to suppress fibril formation) in the presence of β₂-microglobulin provides details of the binding modes of the drug and a rationale for its effect.
β2-微球蛋白已成为研究纤维形成 20 年的模型系统。在原子细节水平上,通过实验研究β2-微球蛋白在溶液中的结构、动力学和热力学,沿着导致纤维形成的途径进行研究是困难的,因为无序和聚集的开始阻止了核磁共振实验中的信号分辨率。此外,很难在交换平衡中表征构象。为了深入了解(在原子水平上)具有分子或超分子水平实验信息的过程,分子动力学模拟在过去十年中得到了广泛应用。在这里,我们使用分子动力学来解决β2-微球蛋白的三个关键方面,这些方面已知与淀粉样蛋白形成有关:(1)使用三氟乙醇和模拟低 pH 条件下的β2-微球蛋白 60ns 分子动力学模拟来研究在能够触发淀粉样蛋白形成的环境条件下蛋白质的行为;(2)自适应偏置力分子动力学模拟用于强制脯氨酸 32 的顺式-反式异构化,并计算折叠和未折叠状态下的相对自由能。模拟了天然样的反式构象(称为中间体 2,决定复性的慢相)10ns,详细说明了顺式-反式异构化和构象无序之间的可能联系;(3)β2-微球蛋白存在下高浓度强力霉素(一种能够抑制纤维形成的分子)的分子动力学模拟提供了药物结合模式的细节和其作用的基本原理。