Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.
Drug Metab Dispos. 2011 May;39(5):904-11. doi: 10.1124/dmd.110.037689. Epub 2011 Feb 2.
According to published in vitro studies, cytochrome P450 3A4 catalyzes montelukast 21-hydroxylation (M5 formation), whereas CYP2C9 catalyzes 36-hydroxylation (M6), the primary step in the main metabolic pathway of montelukast. However, montelukast is a selective competitive CYP2C8 inhibitor, and our recent in vivo studies suggest that CYP2C8 is involved in its metabolism. We therefore reevaluated the contributions of different cytochrome P450 (P450) enzymes, particularly that of CYP2C8, to the hepatic microsomal metabolism of montelukast using clinically relevant substrate concentrations in vitro. The effects of P450 isoform inhibitors on montelukast metabolism were examined using pooled human liver microsomes, and montelukast oxidations by human recombinant CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 were investigated. The results verified the central role of CYP3A4 in M5 formation. The CYP2C8 inhibitors gemfibrozil 1-O-β glucuronide and trimethoprim inhibited the depletion of 0.02 μM montelukast and formation of M6 from 0.05 μM montelukast more potently than did the CYP2C9 inhibitor sulfaphenazole. Likewise, recombinant CYP2C8 catalyzed montelukast depletion and M6 formation at a 6 times higher intrinsic clearance than did CYP2C9, whereas other P450 isoforms produced no M6. On the basis of depletion of 0.02 μM montelukast, CYP2C8 was estimated to account for 72% of the oxidative metabolism of montelukast in vivo, with a 16% contribution for CYP3A4 and 12% for CYP2C9. Moreover, CYP2C8 catalyzed the further metabolism of M6 more actively than did any other P450. In conclusion, CYP2C8 plays a major role in the main metabolic pathway of montelukast at clinically relevant montelukast concentrations in vitro.
根据已发表的体外研究,细胞色素 P450 3A4 催化孟鲁司特 21-羟化(M5 形成),而 CYP2C9 催化 36-羟化(M6),这是孟鲁司特主要代谢途径的第一步。然而,孟鲁司特是一种选择性竞争性 CYP2C8 抑制剂,我们最近的体内研究表明 CYP2C8 参与了其代谢。因此,我们使用体外临床相关的底物浓度重新评估了不同细胞色素 P450(P450)酶,特别是 CYP2C8,对孟鲁司特肝微粒体代谢的贡献。使用人肝微粒体研究了 P450 同工酶抑制剂对孟鲁司特代谢的影响,并研究了人重组 CYP1A2、CYP2A6、CYP2B6、CYP2C8、CYP2C9、CYP2C19、CYP2D6、CYP2E1、CYP3A4 和 CYP3A5 对孟鲁司特的氧化作用。结果证实了 CYP3A4 在 M5 形成中的核心作用。CYP2C8 抑制剂 gemfibrozil 1-O-β glucuronide 和 trimethoprim 比 CYP2C9 抑制剂 sulfaphenazole 更有效地抑制 0.02 μM 孟鲁司特的耗竭和 0.05 μM 孟鲁司特形成 M6。同样,重组 CYP2C8 催化孟鲁司特耗竭和 M6 形成的内在清除率比 CYP2C9 高 6 倍,而其他 P450 同工酶则不产生 M6。基于 0.02 μM 孟鲁司特的耗竭,估计 CYP2C8 占孟鲁司特体内氧化代谢的 72%,CYP3A4 占 16%,CYP2C9 占 12%。此外,CYP2C8 比其他任何 P450 更有效地催化 M6 的进一步代谢。总之,在体外临床相关的孟鲁司特浓度下,CYP2C8 在孟鲁司特的主要代谢途径中起主要作用。