Suppr超能文献

载阿米卡星固体脂质纳米粒的稳定性和抗菌效果。

Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles.

机构信息

Department of Pharmaceutics, Faculty of Pharmacy and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

Int J Nanomedicine. 2010 Dec 16;6:35-43. doi: 10.2147/IJN.S13671.

Abstract

Solid lipid nanoparticles (SLNs) of amikacin were designed in this study for pulmonary delivery to reduce the dose or its administration intervals leading to reduction of its toxicities especially in long term treatment. Nanoparticles of amikacin were prepared from cholesterol by solvent diffusion technique and homogenization. The size, zeta potential, loading efficiency, and release profile of the nanoparticles were studied. The conventional broth macrodilution tube method was used to determine the minimum inhibitory concentration (MIC) and minimum bacteriostatic concentration (MBC) of amikacin SLNs with respect to Pseudomonas aeruginosa in vitro. To guarantee the stability of desired SLNs, they were lyophilized using cryoprotectants. Results showed that considering the release profile of amikacin from the studied nanocarrier, MIC and MBC of amikacin could be about two times less in SLNs of amikacin compared to the free drug. Therefore, fewer doses of amikacin in SLNs can clear the infection with less adverse effects and more safety. Particle size enlargement after lyophilization of desired SLNs after two months storage was limited in comparison with non-lyophilized particles, 996 and 194 nm, respectively. Zeta potential of lyophilized particles was increased to +17 mV from +4 mV before lyophilization. Storage of particles in higher temperature caused accelerated drug release.

摘要

本研究设计了硫酸阿米卡星固体脂质纳米粒(SLNs)用于肺部给药,以减少剂量或给药间隔,从而降低其毒性,特别是在长期治疗中。采用溶剂扩散法和匀浆法从胆固醇制备硫酸阿米卡星纳米粒。研究了纳米粒的粒径、Zeta 电位、载药量和释放特性。采用常规肉汤大试管稀释法测定硫酸阿米卡星 SLNs 对铜绿假单胞菌的体外最小抑菌浓度(MIC)和最小杀菌浓度(MBC)。为保证所需 SLNs 的稳定性,采用冷冻保护剂对其进行冷冻干燥。结果表明,考虑到研究纳米载体中硫酸阿米卡星的释放特性,与游离药物相比,硫酸阿米卡星 SLNs 的 MIC 和 MBC 可降低约 2 倍。因此,使用 SLNs 可减少硫酸阿米卡星的剂量,减少不良反应,提高安全性。与未冻干颗粒相比,经过两个月储存后,所需 SLNs 的冻干后粒径增大受到限制,分别为 996nm 和 194nm。冻干后,颗粒的 Zeta 电位从冻干前的+4mV 增加到+17mV。颗粒在较高温度下储存会加速药物释放。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d650/3025588/e1dd1166b4bf/ijn-6-035f1.jpg

相似文献

1
Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles.
Int J Nanomedicine. 2010 Dec 16;6:35-43. doi: 10.2147/IJN.S13671.
2
Optimization of freeze-drying condition of amikacin solid lipid nanoparticles using D-optimal experimental design.
Pharm Dev Technol. 2012 Mar-Apr;17(2):187-94. doi: 10.3109/10837450.2010.529149. Epub 2010 Nov 4.
4
Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery.
Biomed Res Int. 2013;2013:136859. doi: 10.1155/2013/136859. Epub 2013 Aug 1.
5
Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa.
Eur J Pharm Sci. 2016 Oct 10;93:392-8. doi: 10.1016/j.ejps.2016.08.049. Epub 2016 Aug 26.
6
Optimization of the lyophilization process for long-term stability of solid-lipid nanoparticles.
Drug Dev Ind Pharm. 2012 Oct;38(10):1270-9. doi: 10.3109/03639045.2011.645835. Epub 2012 Jan 12.
7
Polymeric nanoparticles as a platform for permeability enhancement of class III drug amikacin.
Colloids Surf B Biointerfaces. 2018 Sep 1;169:206-213. doi: 10.1016/j.colsurfb.2018.05.028. Epub 2018 May 16.
8
Development and optimization of solid lipid nanoparticles of amikacin by central composite design.
J Liposome Res. 2010 Jun;20(2):97-104. doi: 10.3109/08982100903103904.

引用本文的文献

2
Novel Nano Drug-Loaded Hydrogel Coatings for the Prevention and Treatment of CAUTI.
Adv Healthc Mater. 2024 Dec;13(30):e2401745. doi: 10.1002/adhm.202401745. Epub 2024 Aug 23.
3
State-of-the-Art Review on Inhalable Lipid and Polymer Nanocarriers: Design and Development Perspectives.
Pharmaceutics. 2024 Mar 1;16(3):347. doi: 10.3390/pharmaceutics16030347.
5
Formulation and Evaluation of Amikacin Sulfate Loaded Dextran Nanoparticles against Human Pathogenic Bacteria.
Pharmaceutics. 2023 Mar 28;15(4):1082. doi: 10.3390/pharmaceutics15041082.
7
Diazepam Loaded Solid Lipid Nanoparticles: and Evaluations.
Adv Pharm Bull. 2022 Jan;12(1):86-92. doi: 10.34172/apb.2022.008. Epub 2020 Sep 8.
8
Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems.
Pharmaceutics. 2022 Mar 8;14(3):586. doi: 10.3390/pharmaceutics14030586.
9
Perspectives and Prospective on Solid Lipid Nanoparticles as Drug Delivery Systems.
Molecules. 2022 Feb 24;27(5):1543. doi: 10.3390/molecules27051543.

本文引用的文献

1
Optimization of freeze-drying condition of amikacin solid lipid nanoparticles using D-optimal experimental design.
Pharm Dev Technol. 2012 Mar-Apr;17(2):187-94. doi: 10.3109/10837450.2010.529149. Epub 2010 Nov 4.
2
Thiolated chitosan nanoparticles as an oral delivery system for Amikacin: in vitro and ex vivo evaluations.
J Nanosci Nanotechnol. 2009 Aug;9(8):4593-603. doi: 10.1166/jnn.2009.1090.
3
Development and optimization of solid lipid nanoparticles of amikacin by central composite design.
J Liposome Res. 2010 Jun;20(2):97-104. doi: 10.3109/08982100903103904.
4
A review on applications of liposomes in textile processing.
J Liposome Res. 2008;18(3):249-62. doi: 10.1080/08982100802354665.
6
Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin.
Int J Pharm. 2006 Dec 11;327(1-2):153-9. doi: 10.1016/j.ijpharm.2006.07.026. Epub 2006 Jul 21.
7
Liposomal amikacin dry powder inhaler: effect of fines on in vitro performance.
AAPS PharmSciTech. 2004 Aug 9;5(4):e65. doi: 10.1208/pt050465.
9
Pharmacokinetic dosing of aminoglycosides: a controlled trial.
Am J Med. 2003 Feb 15;114(3):194-8. doi: 10.1016/s0002-9343(02)01476-6.
10
Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies.
J Antimicrob Chemother. 2001 Sep;48(3):333-44. doi: 10.1093/jac/48.3.333.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验