Shan Liang
National Center for Biotechnology Information, NLM, NIH
Cu-1,4,7-Triazacyclononane-1,4-diacetic acid (NO2A)-6-aminohexanoic acid (6-Ahx)-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH (BBN(7–14)NH), abbreviated as Cu-NO2A-(6-Ahx)-BBN(7–14)NH, is a bombesin (BBN)-based, Cu-NO2A-conjugated peptide that was synthesized by Lane et al. for use in positron emission tomography (PET) of tumors expressing gastrin-releasing peptide receptor (GRPR) (1, 2). GRPR is a glycosylated G-protein–coupled receptor that is normally expressed in non-neuroendocrine tissues of the breast and pancreas and in neuroendocrine cells of the brain, gastrointestinal tract, lung, and prostate (3, 4). GRPR has been found to be overexpressed in various human tumors, and a large number of BBN analogs have been investigated for GRPR-targeted imaging and therapy (5, 6). These analogs have been synthesized on the basis of either truncated BBN (BBN(6–14) or BBN(7–14)) or full-length BBN(1–14) (7, 8). Chelators and spacers have been used frequently for chelating metals and for improving the kinetics of conjugates (9-11). Cu is a radiometal with potential applications in diagnostic and therapeutic nuclear medicine. The half-life for Cu ( = 12.7 h) is long enough for drug preparation, quality control, imaging, and therapy (12, 13). However, use of Cu is limited by issues of transchelation to proteins found in blood and liver (such as superoxide dismutase) (1). A variety of chelators have been investigated for the purpose of stably chelating Cu (13). In general, Cu-labeled 1,4,7,10-tetraazacyclodecane-1,4,7,10-tetraacetic acid (Cu-DOTA) and Cu-labeled 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (Cu-TETA) exhibit high uptake and retention in nontarget organs, which limits their application. Cross-bridged (CB) analogs, such as CB-DO2A ((1,4,7,10-tetraazabicyclo[5.5.2]tetradecane-4,10-diyl)diacetic acid), CB-TE2A ((1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-4,11-diyl)diacetic acid), SarAr (1--(4-aminobenzyl)-3,6,10,13,16,19-hexa-aza-bicyclo-[6.6.6]eichosane-1,8-diamine), and NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid), demonstrate improved copper containment by enhancing the ligand's rigidity (2, 14). Prasanphanich et al. recently reported that the NOTA-based Cu-NOTA-8-Aoc-BBN(7–14)NH conjugate (where 8-Aoc = 8-aminooctanoic acid) exhibited decreased accumulation in hepatic tissue as compared with other chelator-based (DOTA, TETA, and CB-TE2A) conjugates (2, 14). To improve the tumor uptake and maintain the good pharmacokinetic properties of the Cu-NOTA-8-Aoc-BBN(7–14)NH conjugate, Lane et al. synthesized a new group of conjugates with the NOTA derivative NO2A and replaced the spacer 8-Aoc with an aliphatic or aromatic linking (1). These conjugates were abbreviated as Cu-NO2A-(X)-BBN(7–14)NH, where X denotes the pharmacokinetic modifier, such as AMBA (para-aminobenzoic acid), β-Ala (beta-alanine), 5-Ava (5-aminovaleric acid), 6-Ahx, 8-Aoc, and 9-Anc (9-aminonanoic acid). The β-Ala, 5-Ava, 6-Ahx, and 9-Anc are aliphatic pharmacokinetic modifiers, ranging from three to nine carbons in length, whereas AMBA is an aromatic pharmacokinetic modifier and is more rigid than the aliphatic modifiers. Evidence indicates that a spacing moiety, ranging from three to eight carbons in length, can assist in receptor-mediated uptake (15). Conjugates containing an aromatic linker have significantly higher uptake and retention in PC-3 tumor tissue than those containing hydrocarbon or ether linkers (15, 16). Studies by Lane et al. have shown that the spacer X in the Cu-NO2A-(X)-BBN(7–14)NH conjugates has a significant role in clearance, accumulation, and retention of the conjugates in tumor tissue (1). The four conjugates showing the most favorable pharmacokinetic properties and the highest degree of pancreas and tumor accumulation were those in which X = 6-Ahx, 8-Aoc, 9-Anc, or AMBA. PET imaging with these conjugates produced high-contrast images of PC-3 tumor xenografts in severe combined immunodeficient (SCID) mice (1). This chapter describes the data obtained with Cu-NO2A-(6-Ahx)-BBN(7–14)NH. Detailed information for other Cu-NO2A-(X)-BBN(7–14)NH conjugates is available in MICAD (http://www.ncbi.nlm.nih.gov/books/NBK5330/) (1).
铜-1,4,7-三氮杂环壬烷-1,4-二乙酸(NO2A)-6-氨基己酸(6-Ahx)-谷氨酰胺-色氨酸-丙氨酸-缬氨酸-甘氨酸-组氨酸-亮氨酸-甲硫氨酸-NH(BBN(7–14)NH),简称为铜-NO2A-(6-Ahx)-BBN(7–14)NH,是一种基于蛙皮素(BBN)的、与铜-NO2A共轭的肽,由莱恩等人合成,用于表达胃泌素释放肽受体(GRPR)的肿瘤的正电子发射断层扫描(PET)(1, 2)。GRPR是一种糖基化的G蛋白偶联受体,通常在乳腺和胰腺的非神经内分泌组织以及脑、胃肠道、肺和前列腺的神经内分泌细胞中表达(3, 4)。已发现GRPR在多种人类肿瘤中过度表达,并且已经研究了大量BBN类似物用于GRPR靶向成像和治疗(5, 6)。这些类似物是基于截短的BBN(BBN(6–14)或BBN(7–14))或全长BBN(1–14)合成的(7, 8)。螯合剂和间隔基团经常用于螯合金属以及改善共轭物的动力学(9 - 11)。铜是一种放射性金属,在诊断和治疗核医学中有潜在应用。铜( = 12.7小时)的半衰期足够长,可用于药物制备、质量控制、成像和治疗(12, 13)。然而,铜的使用受到与血液和肝脏中发现的蛋白质(如超氧化物歧化酶)发生转螯合问题的限制(1)。为了稳定螯合铜,已经研究了多种螯合剂(13)。一般来说,铜标记的1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸(铜-DOTA)和铜标记的1,4,8,11-四氮杂环十四烷-1,4,8,11-四乙酸(铜-TETA)在非靶器官中表现出高摄取和保留,这限制了它们的应用。交联(CB)类似物,如CB-DO2A((1,4,7,10-四氮杂双环[5.5.2]十四烷-4,10-二基)二乙酸)、CB-TE2A((1,4,8,11-四氮杂双环[6.6.2]十六烷-4,11-二基)二乙酸)、SarAr(1-(4-氨基苄基)-3,6,10,13,16,19-六氮杂双环-[6.6.6]二十烷-1,8-二胺)和NOTA(1,4,7-三氮杂环壬烷-1,4,7-三乙酸),通过增强配体的刚性表现出改善的铜容纳能力(2, 14)。普拉桑帕尼奇等人最近报道,与其他基于螯合剂(DOTA、TETA和CB-TE2A)的共轭物相比,基于NOTA的铜-NOTA-8-Aoc-BBN(7–14)NH共轭物(其中8-Aoc = 8-氨基辛酸)在肝组织中的积累减少(2, 14)。为了提高肿瘤摄取并维持铜-NOTA-8-Aoc-BBN(7–14)NH共轭物的良好药代动力学性质,莱恩等人合成了一组新的与NOTA衍生物NO2A共轭的共轭物,并用脂肪族或芳香族连接基团取代间隔基团8-Aoc(1)。这些共轭物简称为铜-NO2A-(X)-BBN(7–14)NH,其中X表示药代动力学修饰剂,如对氨基苯甲酸(AMBA)、β-丙氨酸(β-Ala)、5-氨基戊酸(5-Ava)、6-Ahx、8-Aoc和9-氨基壬酸(9-Anc)。β-丙氨酸、5-氨基戊酸、6-Ahx和9-氨基壬酸是脂肪族药代动力学修饰剂,长度为三到九个碳,而AMBA是芳香族药代动力学修饰剂,比脂肪族修饰剂更刚性。有证据表明,长度为三到八个碳的间隔部分可以协助受体介导的摄取(15)。含有芳香族连接基团的共轭物在PC-3肿瘤组织中的摄取和保留明显高于含有烃或醚连接基团的共轭物(15, 16)。莱恩等人的研究表明,铜-NO2A-(X)-BBN(7–14)NH共轭物中的间隔基团X在共轭物在肿瘤组织中的清除、积累和保留方面具有重要作用(1)。四种表现出最有利药代动力学性质以及胰腺和肿瘤积累程度最高的共轭物是X = 6-Ahx、8-Aoc、9-Anc或AMBA的那些共轭物。用这些共轭物进行的PET成像在严重联合免疫缺陷(SCID)小鼠中产生了PC-3肿瘤异种移植的高对比度图像(1)。本章描述了用铜-NO2A-(6-Ahx)-BBN(7–14)NH获得的数据。其他铜-NO2A-(X)-BBN(7–14)NH共轭物的详细信息可在MICAD(http://www.ncbi.nlm.nih.gov/books/NBK5330/)中获取(1)。