Suppr超能文献

p53R2 是核糖核苷酸还原酶的一个亚基,具有错义突变的人成纤维细胞在有丝分裂和静止期的脱氧核苷酸代谢。

Deoxyribonucleotide metabolism in cycling and resting human fibroblasts with a missense mutation in p53R2, a subunit of ribonucleotide reductase.

机构信息

Department of Biology, University of Padova, Padova, Italy.

出版信息

J Biol Chem. 2011 Apr 1;286(13):11132-40. doi: 10.1074/jbc.M110.202283. Epub 2011 Feb 5.

Abstract

Ribonucleotide reduction provides deoxynucleotides for nuclear and mitochondrial (mt) DNA replication and DNA repair. In cycling mammalian cells the reaction is catalyzed by two proteins, R1 and R2. A third protein, p53R2, with the same function as R2, occurs in minute amounts. In quiescent cells, p53R2 replaces the absent R2. In humans, genetic inactivation of p53R2 causes early death with mtDNA depletion, especially in muscle. We found that cycling fibroblasts from a patient with a lethal mutation in p53R2 contained a normal amount of mtDNA and showed normal growth, ribonucleotide reduction, and deoxynucleoside triphosphate (dNTP) pools. However, when made quiescent by prolonged serum starvation the mutant cells strongly down-regulated ribonucleotide reduction, decreased their dCTP and dGTP pools, and virtually abolished the catabolism of dCTP in substrate cycles. mtDNA was not affected. Also, nuclear DNA synthesis and the cell cycle-regulated enzymes R2 and thymidine kinase 1 decreased strongly, but the mutant cell populations retained unexpectedly larger amounts of the two enzymes than the controls. This difference was probably due to their slightly larger fraction of S phase cells and therefore not induced by the absence of p53R2 activity. We conclude that loss of p53R2 affects ribonucleotide reduction only in resting cells and leads to a decrease of dNTP catabolism by substrate cycles that counterweigh the loss of anabolic activity. We speculate that this compensatory mechanism suffices to maintain mtDNA in fibroblasts but not in muscle cells with a larger content of mtDNA necessary for their high energy requirements.

摘要

核苷酸还原为核和线粒体(mt)DNA 复制和 DNA 修复提供脱氧核苷酸。在哺乳动物的循环细胞中,该反应由两种蛋白质 R1 和 R2 催化。第三种蛋白质 p53R2 与 R2 具有相同的功能,但其含量极少。在静止细胞中,p53R2 取代不存在的 R2。在人类中,p53R2 的遗传失活导致 mtDNA 耗竭的早逝,尤其是在肌肉中。我们发现,具有 p53R2 致命突变的患者的循环成纤维细胞中含有正常数量的 mtDNA,并显示出正常的生长、核苷酸还原和脱氧核苷三磷酸(dNTP)池。然而,当通过长期血清饥饿使其静止时,突变细胞强烈下调核苷酸还原,减少 dCTP 和 dGTP 池,并几乎消除了 dCTP 在底物循环中的分解代谢。mtDNA 不受影响。此外,核 DNA 合成和细胞周期调节酶 R2 和胸苷激酶 1 强烈下降,但突变细胞群保留的两种酶的量比对照细胞群出乎意料地大。这种差异可能是由于它们的 S 期细胞的比例略大,因此不是由于缺乏 p53R2 活性而诱导的。我们得出结论,p53R2 的缺失仅在静止细胞中影响核苷酸还原,并通过底物循环导致 dNTP 分解代谢减少,这抵消了合成代谢活性的丧失。我们推测这种补偿机制足以维持成纤维细胞中的 mtDNA,但不足以维持具有更高能量需求的 mtDNA 含量较大的肌肉细胞中的 mtDNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ecb/3064167/cca6c76ce1a1/zbc0181157310001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验