Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Plant Physiol. 2011 Apr;155(4):2096-107. doi: 10.1104/pp.111.172494. Epub 2011 Feb 7.
Previous theoretical work showed that leaf-water isotope ratio (δ(18)O(L)) of Crassulacean acid metabolism epiphytes was controlled by the δ(18)O of atmospheric water vapor (δ(18)O(a)), and observed δ(18)O(L) could be explained by both a non-steady-state model and a "maximum enrichment" steady-state model (δ(18)O(L-M)), the latter requiring only δ(18)O(a) and relative humidity (h) as inputs. δ(18)O(L), therefore, should contain an extractable record of δ(18)O(a). Previous empirical work supported this hypothesis but raised many questions. How does changing δ(18)O(a) and h affect δ(18)O(L)? Do hygroscopic trichomes affect observed δ(18)O(L)? Are observations of changes in water content required for the prediction of δ(18)O(L)? Does the leaf need to be at full isotopic steady state for observed δ(18)O(L) to equal δ(18)O(L-M)? These questions were examined with a climate-controlled experimental system capable of holding δ(18)O(a) constant for several weeks. Water adsorbed to trichomes required a correction ranging from 0.5‰ to 1‰. δ(18)O(L) could be predicted using constant values of water content and even total conductance. Tissue rehydration caused a transitory change in δ(18)O(L), but the consequent increase in total conductance led to a tighter coupling with δ(18)O(a). The non-steady-state leaf water models explained observed δ(18)O(L) (y = 0.93x - 0.07; r(2) = 0.98) over a wide range of δ(18)O(a) and h. Predictions of δ(18)O(L-M) agreed with observations of δ(18)O(L) (y = 0.87x - 0.99; r(2) = 0.92), and when h > 0.9, the leaf did not need to be at isotopic steady state for the δ(18)O(L-M) model to predict δ(18)O(L) in the Crassulacean acid metabolism epiphyte Tillandsia usneoides.
先前的理论工作表明,景天酸代谢附生植物的叶片水分同位素比(δ(18)O(L))受大气水汽同位素比(δ(18)O(a))的控制,且观测到的 δ(18)O(L)可以用非稳态模型和“最大富集”稳态模型(δ(18)O(L-M))来解释,后者仅需 δ(18)O(a)和相对湿度(h)作为输入。因此,δ(18)O(L)应该包含大气水汽 δ(18)O 的可提取记录。先前的实证工作支持了这一假设,但也提出了许多问题。δ(18)O(a)和 h 的变化如何影响 δ(18)O(L)?亲水性毛状体是否会影响观测到的 δ(18)O(L)?预测 δ(18)O(L)是否需要观测水分含量的变化?为了使观测到的 δ(18)O(L)等于 δ(18)O(L-M),叶片是否需要达到完全同位素稳态?这些问题可以通过一个能够在数周内保持 δ(18)O(a)恒定的气候控制实验系统来检验。亲水性毛状体吸附的水分需要校正 0.5‰ 到 1‰。即使在总电导率恒定的情况下,也可以用恒定的水分含量来预测 δ(18)O(L)。组织再水合会导致 δ(18)O(L)发生短暂变化,但总电导率的增加会导致与 δ(18)O(a)的耦合更加紧密。非稳态叶片水分模型可以解释在广泛的 δ(18)O(a)和 h 范围内观测到的 δ(18)O(L)(y = 0.93x - 0.07;r(2) = 0.98)。δ(18)O(L-M)的预测与 δ(18)O(L)的观测结果一致(y = 0.87x - 0.99;r(2) = 0.92),当 h > 0.9 时,δ(18)O(L-M)模型可以预测景天酸代谢附生植物Tillandsia usneoides 的 δ(18)O(L),而叶片不需要达到同位素稳态。