Laboratoire d'Astrophysique, Observatoire de Grenoble, Université Joseph Fourier, CNRS UMR5571, B.P. 53, 38041 Grenoble Cedex 09, France.
Faraday Discuss. 2010;147:337-48; discussion 379-403. doi: 10.1039/c003908j.
The description of planetary and interstellar chemistry relies strongly on ion-molecule reaction rate data collected at room temperature or above. However, the temperature in the ionospheres of planets and in the interstellar medium can decrease down to 100 K and 10 K, respectively. We present here a simple semiempirical method to extend available measurements towards those temperatures. Our approach is based on the long-range capture theory combined with room temperature data. Results are presented for cation-molecule and anion-molecule reactions. An overall good agreement is observed between our model and various experimental data in the temperature range 20-295 K. Deviations larger than a factor of 2 are found, however, with ion trap measurements below approximately 50 K. Predictions are also made for reactions of carbon chain and hydrocarbon ions with atomic hydrogen, of particular importance in Titan's atmosphere and in interstellar clouds.
行星和星际化学的描述强烈依赖于在室温或以上收集的离子-分子反应速率数据。然而,行星的电离层和星际介质中的温度分别可降至 100 K 和 10 K。在这里,我们提出了一种简单的半经验方法,将可用的测量结果扩展到这些温度。我们的方法基于长程捕获理论,并结合室温数据。结果显示了阳离子-分子和阴离子-分子反应。在 20-295 K 的温度范围内,我们的模型与各种实验数据之间观察到了很好的一致性。然而,在大约 50 K 以下的离子阱测量中,发现偏差大于 2 倍。还对碳链和碳氢化合物离子与原子氢的反应进行了预测,这些反应在泰坦的大气和星际云中具有重要意义。