Suppr超能文献

神经胶质中脑实质海绵状血管畸形 3 型(Ccm3)缺失导致 CCM 和血管病变。

Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology.

机构信息

Department of Neurosurgery, Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06520, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3737-42. doi: 10.1073/pnas.1012617108. Epub 2011 Feb 14.

Abstract

Communication between neural cells and the vasculature is integral to the proper development and later function of the central nervous system. A mechanistic understanding of the interactions between components of the neurovascular unit has implications for various disorders, including cerebral cavernous malformations (CCMs) in which focal vascular lesions form throughout the central nervous system. Loss of function mutations in three genes with proven endothelial cell autonomous roles, CCM1/krev1 interaction trapped gene 1, CCM2, and CCM3/programmed cell death 10, cause familial CCM. By using neural specific conditional mouse mutants, we show that Ccm3 has both neural cell autonomous and nonautonomous functions. Gfap- or Emx1-Cre-mediated Ccm3 neural deletion leads to increased proliferation, increased survival, and activation of astrocytes through cell autonomous mechanisms involving activated Akt signaling. In addition, loss of neural CCM3 results in a vascular phenotype characterized by diffusely dilated and simplified cerebral vasculature along with formation of multiple vascular lesions that closely resemble human cavernomas through cell nonautonomous mechanisms. RNA sequencing of the vascular lesions shows abundant expression of molecules involved in cytoskeletal remodeling, including protein kinase A and Rho-GTPase signaling. Our findings implicate neural cells in the pathogenesis of CCMs, showing the importance of this pathway in neural/vascular interactions within the neurovascular unit.

摘要

神经细胞与血管之间的通讯对于中枢神经系统的正常发育和后期功能至关重要。对神经血管单元各组成部分之间相互作用的机制理解,对包括脑海绵状血管畸形(CCM)在内的各种疾病具有重要意义,在这些疾病中,中枢神经系统内会形成局灶性血管病变。已证实具有内皮细胞自主作用的三个基因(CCM1/krev1 interaction trapped gene 1、CCM2 和 CCM3/programmed cell death 10)的功能丧失突变会导致家族性 CCM。通过使用神经特异性条件性小鼠突变体,我们表明 Ccm3 具有神经细胞自主和非自主功能。通过 Gfap 或 Emx1-Cre 介导的 Ccm3 神经缺失会导致通过涉及激活 Akt 信号的细胞自主机制导致星形胶质细胞增殖增加、存活增加和激活。此外,神经 CCM3 的缺失会导致血管表型,其特征是脑血管弥漫性扩张和简化,以及形成多个类似于人类海绵状血管瘤的血管病变,这是通过细胞非自主机制实现的。血管病变的 RNA 测序显示,涉及细胞骨架重塑的分子(包括蛋白激酶 A 和 Rho-GTPase 信号)的大量表达。我们的研究结果表明神经细胞参与了 CCM 的发病机制,表明该途径在神经血管单元内的神经/血管相互作用中的重要性。

相似文献

1
Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology.
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3737-42. doi: 10.1073/pnas.1012617108. Epub 2011 Feb 14.
2
Differential angiogenesis function of CCM2 and CCM3 in cerebral cavernous malformations.
Neurosurg Focus. 2010 Sep;29(3):E1. doi: 10.3171/2010.5.FOCUS1090.
3
Mural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations.
Arterioscler Thromb Vasc Biol. 2020 Sep;40(9):2171-2186. doi: 10.1161/ATVBAHA.120.314586. Epub 2020 Jul 9.
4
CCM3 and cerebral cavernous malformation disease.
Stroke Vasc Neurol. 2019 Mar 2;4(2):67-70. doi: 10.1136/svn-2018-000195. eCollection 2019 Jul.
6
mTORC1 Signaling in Brain Endothelial Progenitors Contributes to CCM Pathogenesis.
Circ Res. 2024 Aug 2;135(4):e94-e113. doi: 10.1161/CIRCRESAHA.123.324015. Epub 2024 Jul 3.
7
Endothelial Cell-Pericyte Interactions in the Pathogenesis of Cerebral Cavernous Malformations (CCMs).
Cold Spring Harb Perspect Med. 2023 Mar 1;13(3):a041188. doi: 10.1101/cshperspect.a041188.
8
Conditional deletion of Ccm2 causes hemorrhage in the adult brain: a mouse model of human cerebral cavernous malformations.
Hum Mol Genet. 2011 Aug 15;20(16):3198-206. doi: 10.1093/hmg/ddr225. Epub 2011 May 19.
10
Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease.
Dev Biol. 2012 Feb 15;362(2):121-31. doi: 10.1016/j.ydbio.2011.12.006. Epub 2011 Dec 11.

引用本文的文献

1
Development of perivascular astrocyte processes.
Front Neurosci. 2025 Jul 4;19:1585340. doi: 10.3389/fnins.2025.1585340. eCollection 2025.
2
Epidemiology and Aetiology of Cerebral Cavernous Malformations.
Acta Neurochir Suppl. 2025;136:143-149. doi: 10.1007/978-3-031-89844-0_18.
3
Cerebral Cavernous Malformation: From Genetics to Pharmacotherapy.
Brain Behav. 2025 Jan;15(1):e70223. doi: 10.1002/brb3.70223.
4
6
mTORC1 Signaling in Brain Endothelial Progenitors Contributes to CCM Pathogenesis.
Circ Res. 2024 Aug 2;135(4):e94-e113. doi: 10.1161/CIRCRESAHA.123.324015. Epub 2024 Jul 3.
7
Transcriptomic signatures of individual cell types in cerebral cavernous malformation.
Cell Commun Signal. 2024 Jan 9;22(1):23. doi: 10.1186/s12964-023-01301-2.
9
The Dual Role of PDCD10 in Cancers: A Promising Therapeutic Target.
Cancers (Basel). 2022 Dec 3;14(23):5986. doi: 10.3390/cancers14235986.
10
Dysregulated Hemostasis and Immunothrombosis in Cerebral Cavernous Malformations.
Int J Mol Sci. 2022 Oct 20;23(20):12575. doi: 10.3390/ijms232012575.

本文引用的文献

3
Crystal structure of CCM3, a cerebral cavernous malformation protein critical for vascular integrity.
J Biol Chem. 2010 Jul 30;285(31):24099-107. doi: 10.1074/jbc.M110.128470. Epub 2010 May 19.
6
CCM3/PDCD10 stabilizes GCKIII proteins to promote Golgi assembly and cell orientation.
J Cell Sci. 2010 Apr 15;123(Pt 8):1274-84. doi: 10.1242/jcs.061341. Epub 2010 Mar 23.
7
Cell-nonautonomous regulation of C. elegans germ cell death by kri-1.
Curr Biol. 2010 Feb 23;20(4):333-8. doi: 10.1016/j.cub.2009.12.032. Epub 2010 Feb 4.
8
Recent insights into cerebral cavernous malformations: the molecular genetics of CCM.
FEBS J. 2010 Mar;277(5):1070-5. doi: 10.1111/j.1742-4658.2009.07535.x. Epub 2010 Jan 22.
9
CCM2 mediates death signaling by the TrkA receptor tyrosine kinase.
Neuron. 2009 Sep 10;63(5):585-91. doi: 10.1016/j.neuron.2009.08.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验