School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
Phys Chem Chem Phys. 2011 May 14;13(18):8075-93. doi: 10.1039/c0cp02390f. Epub 2011 Feb 14.
A recent review (Ashfold et al., Phys. Chem. Chem. Phys., 2010, 12, 1218) highlighted the important role of dissociative excited states formed by electron promotion to σ* orbitals in establishing the photochemistry of many molecular hydrides. Here we extend such considerations to molecular halides, with a particular focus on iodobenzene. Two experimental techniques (velocity mapped ion imaging (VMI) and time resolved infrared (IR) diode laser absorption) and electronic structure calculations have been employed in a comprehensive study of the near ultraviolet (UV) photodissociation of gas phase iodobenzene molecules. The VMI studies yield the speeds and angular distributions of the I((2)P(3/2)) and I*((2)P(1/2)) photofragments formed by photolysis in the wavelength range 330 ≥λ≥ 206 nm. Four distinct dissociation channels are observed for the I((2)P(3/2)) atom products, and a further three channels for the I*((2)P(1/2)) fragments. The phenyl (Ph) radical partners formed via one particular I* product channel following excitation at wavelengths 305 ≥λ≥ 250 nm are distributed over a sufficiently select sub-set of vibrational (v) states that the images allow resolution of specific I* + Ph(v) channels, identification of the active product mode (ν(10), an in-plane ring breathing mode), and a refined determination of D(0)(Ph-I) = 23,390 ± 50 cm(-1). The time-resolved IR absorption studies allow determination of the spin-orbit branching ratio in the iodine atom products formed at λ = 248 nm (ϕ(I*) = [I*]/([I] + [I*]) = 0.28 ± 0.04) and at 266 nm (ϕ(I*) = 0.32 ± 0.05). The complementary high-level, spin-orbit resolved ab initio calculations of sections (along the C-I bond coordinate) through the ground and first 19 excited state potential energy surfaces (PESs) reveal numerous excited states in the energy range of current interest. Except at the very shortest wavelength, however, all of the observed I and I* products display limiting or near limiting parallel recoil anisotropy. This encourages discussion of the fragmentation dynamics in terms of excitation to states of A(1) total symmetry and dissociation on the 2A(1) and 4A(1) (σ* ← n/π) PESs to yield, respectively, I and I* products, or via non-adiabatic coupling to other σ* ← n/π PESs that correlate to these respective limits. Similarities (and differences) with the available UV photochemical data for the other aryl halides, and with the simpler (and more thoroughly studied) iodides HI and CH(3)I, are summarised.
最近的一篇评论(Ashfold 等人,《物理化学杂志》,2010 年,第 12 卷,第 1218 页)强调了由电子促进到 σ轨道形成的离解激发态在许多分子氢化物的光化学中所起的重要作用。在这里,我们将这些考虑扩展到分子卤化物,特别关注碘苯。我们采用了两种实验技术(速度映射离子成像(VMI)和时间分辨红外(IR)二极管激光吸收)和电子结构计算,对气相碘苯分子在近紫外(UV)光解方面进行了全面研究。VMI 研究提供了在 330≥λ≥206nm 波长范围内光解形成的 I((2)P(3/2))和 I((2)P(1/2))光碎片的速度和角分布。对于 I((2)P(3/2))原子产物,观察到四个不同的离解通道,对于 I*((2)P(1/2))碎片,观察到另外三个通道。在 305≥λ≥250nm 波长激发下,通过特定的 I产物通道形成的苯(Ph)自由基配体分布在足够选择的振动(v)状态子集中,使得图像可以分辨特定的 I+Ph(v)通道,识别活性产物模式(ν(10),面内环呼吸模式),并对 D(0)(Ph-I) = 23,390 ± 50cm(-1)进行了精确确定。时间分辨红外吸收研究允许确定在 λ=248nm 时形成的碘原子产物的自旋轨道分支比(ϕ(I*)=[I*]/([I]+[I*])=0.28±0.04)和在 266nm 时(ϕ(I*)=0.32±0.05)。互补的高级、自旋轨道分辨从头算计算沿着 C-I 键坐标的部分(通过地面和第一个 19 个激发态势能面(PESs))揭示了当前感兴趣的能量范围内的许多激发态。然而,除了最短的波长之外,所有观察到的 I 和 I产物都显示出限制或接近限制的平行反冲各向异性。这鼓励根据激发到 A(1)总对称的状态以及在 2A(1)和 4A(1)(σ←n/π)PES 上的解离来讨论碎片动力学,分别产生 I 和 I产物,或者通过非绝热耦合到与这些相应极限相关的其他 σ←n/π PES。总结了与其他芳基卤化物以及较简单(和更彻底研究)的 HI 和 CH(3)I 的可用 UV 光化学数据的相似性(和差异)。