Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia.
J Chem Phys. 2011 Feb 21;134(7):074111. doi: 10.1063/1.3552226.
Like-charged surfaces are able to attract each other if they are embedded in an electrolyte solution of multivalent rodlike ions, even if the rods are long. To reproduce this ability the Poisson-Boltzmann model has recently been extended so as to account for the rodlike structure of the mobile ions. Our model properly accounts for intraionic correlations but still neglects correlations between different rodlike ions. For sufficiently long rods, the model shows excellent agreement with Monte Carlo simulations and exhibits two minima - a depletion and a bridging minimum - in the interaction free energy. In the present work, we generalize the Poisson-Boltzmann model to systems with polydisperse rod lengths and arbitrary charge distributions along the rods, including the presence of salt. On the level of the linearized Debye-Hückel model we derive a general criterion for whether an electrolyte with given distribution of rodlike ions is able to mediate attraction between like-charged surfaces. We numerically analyze two special cases, namely the influence of salt on symmetric and asymmetric mixtures of monodisperse rodlike ions. The symmetric mixture is characterized by the presence of both negatively and positively charged (but otherwise identical) rodlike ions. For the asymmetric mixture, the system contains rodlike ions of only one type. We demonstrate that the addition of salt retains the depletion minimum but tends to eliminate the bridging minimum.
带相同电荷的表面如果嵌入多价棒状离子的电解质溶液中,即使棒很长,也能够相互吸引。为了再现这种能力,泊松-玻尔兹曼模型最近得到了扩展,以考虑到可移动离子的棒状结构。我们的模型适当地考虑了离子内的相关性,但仍然忽略了不同棒状离子之间的相关性。对于足够长的棒,该模型与蒙特卡罗模拟显示出极好的一致性,并在相互作用自由能中表现出两个最小值 - 耗尽最小值和桥接最小值。在本工作中,我们将泊松-玻尔兹曼模型推广到具有多分散棒长和沿棒任意电荷分布的系统,包括盐的存在。在线性化的德拜-休克尔模型的水平上,我们推导出了一个关于给定棒状离子分布的电解质是否能够介导带相同电荷的表面之间相互吸引的一般准则。我们数值分析了两种特殊情况,即盐对对称和不对称的单分散棒状离子混合物的影响。对称混合物的特征是存在带负电荷和带正电荷的(但其他方面相同的)棒状离子。对于不对称混合物,系统只包含一种类型的棒状离子。我们证明,盐的添加保留了耗尽最小值,但倾向于消除桥接最小值。