State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.
J Chem Phys. 2011 Feb 21;134(7):074708. doi: 10.1063/1.3553257.
We study magnetism and electronic structures of armchair BCN-hybrid nanoribbons from density functional theory. Different from armchair graphene nanoribbons, armchair BCN-hybrid nanoribbons are found to present magnetism along the edges of the nanoribbons if B and N atoms are unpaired in the nanoribbons. Intriguing spin-polarized bands, including magnetic semiconductors, half metals, and magnetic metals, are obtained in the armchair nanoribbons with both the edges composed of C and N atoms. The spin polarization in these armchair nanoribbons is ascribed to the appearance of the unsaturated electronic states in the systems. The magnetic metallicity can be tuned further to half metallicity by adsorbing O atoms at appropriate positions in the ribbons. The electronic structures of the nanoribbons without spin polarization are also analyzed. Our studies provide understanding of the magnetism mechanisms and the electronic properties and most importantly, how to achieve half metallicity in low-dimensional BCN-hybrid systems.
我们使用密度泛函理论研究了扶手椅型 BCN 杂化纳米带的磁性和电子结构。与扶手椅型石墨烯纳米带不同,如果纳米带中 B 和 N 原子不成对,则扶手椅型 BCN 杂化纳米带的边缘会呈现出磁性。在由 C 和 N 原子组成边缘的扶手椅纳米带中,得到了有趣的自旋极化能带,包括磁性半导体、半金属和金属磁性。这些扶手椅纳米带中的自旋极化归因于体系中不饱和电子态的出现。通过在合适的位置吸附 O 原子,可以进一步将这些扶手椅纳米带的金属磁性调谐为半金属性。我们还分析了没有自旋极化的纳米带的电子结构。我们的研究提供了对磁性机制和电子性质的理解,最重要的是,提供了如何在低维 BCN 杂化体系中实现半金属性的理解。