Suppr超能文献

淋病奈瑟菌表位设计的一种新策略。

A novel strategy of epitope design in Neisseria gonorrhoeae.

作者信息

Barh Debmalya, Misra Amarendra Narayan, Kumar Anil, Vasco Azevedo

出版信息

Bioinformation. 2010 Jul 6;5(2):77-85. doi: 10.6026/97320630005077.

Abstract

In spite of genome sequences of both human and N. gonorrhoeae in hand, vaccine for gonorrhea is yet not available. Due to availability of several host and pathogen genomes and numerous tools for in silico prediction of effective B-cell and T-cell epitopes; recent trend of vaccine designing has been shifted to peptide or epitope based vaccines that are more specific, safe, and easy to produce. In order to design and develop such a peptide vaccine against the pathogen, we adopted a novel computational approache based on sequence, structure, QSAR, and simulation methods along with fold level analysis to predict potential antigenic B-cell epitope derived T-cell epitopes from four vaccine targets of N. gonorrhoeae previously identified by us [Barh and Kumar (2009) In Silico Biology 9, 1-7]. Four epitopes, one from each protein, have been designed in such a way that each epitope is highly likely to bind maximum number of HLA molecules (comprising of both the MHC-I and II) and interacts with most frequent HLA alleles (A0201, A0204, B2705, DRB10101, and DRB1*0401) in human population. Therefore our selected epitopes are highly potential to induce both the B-cell and T-cell mediated immune responses. Of course, these selected epitopes require further experimental validation.

摘要

尽管已经掌握了人类和淋病奈瑟菌的基因组序列,但淋病疫苗仍未问世。由于有多种宿主和病原体基因组以及众多用于计算机预测有效B细胞和T细胞表位的工具,疫苗设计的最新趋势已转向基于肽或表位的疫苗,这类疫苗更具特异性、安全性且易于生产。为了设计和开发针对该病原体的此类肽疫苗,我们采用了一种基于序列、结构、定量构效关系和模拟方法以及折叠水平分析的新型计算方法,以从我们之前鉴定的淋病奈瑟菌的四个疫苗靶点中预测潜在的抗原性B细胞表位衍生的T细胞表位[Barh和Kumar(2009年),《计算机生物学》9,1 - 7]。已设计出四个表位,每个蛋白质一个,设计方式使得每个表位极有可能与最大数量的HLA分子(包括MHC - I和II)结合,并与人群中最常见的HLA等位基因(A0201、A0204、B2705、DRB10101和DRB1*0401)相互作用。因此,我们选择的表位极有可能诱导B细胞和T细胞介导的免疫反应。当然,这些选择的表位需要进一步的实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a1e/3039994/fd6269eaa187/97320630005077F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验