Degnan Bernard M, Adamska Maja, Craigie Alina, Degnan Sandie M, Fahey Bryony, Gauthier Marie, Hooper John N A, Larroux Claire, Leys Sally P, Lovas Erica, Richards Gemma S
School of Integrative Biology, University of Queensland, Brisbane QLD 4072, Australia.
CSH Protoc. 2008 Dec 1;2008:pdb.emo108. doi: 10.1101/pdb.emo108.
INTRODUCTIONSponges are one of the earliest branching metazoans. In addition to undergoing complex development and differentiation, they can regenerate via stem cells and can discern self from nonself ("allorecognition"), making them a useful comparative model for a range of metazoan-specific processes. Molecular analyses of these processes have the potential to reveal ancient homologies shared among all living animals and critical genomic innovations that underpin metazoan multicellularity. Amphimedon queenslandica (Porifera, Demospongiae, Haplosclerida, Niphatidae) is the first poriferan representative to have its genome sequenced, assembled, and annotated. Amphimedon exemplifies many sessile and sedentary marine invertebrates (e.g., corals, ascidians, bryozoans): They disperse during a planktonic larval phase, settle in the vicinity of conspecifics, ward off potential competitors (including incompatible genotypes), and ensure that brooded eggs are fertilized by conspecific sperm. Using genomic and expressed sequence tag (EST) resources from Amphimedon, functional genomic approaches can be applied to a wide range of ecological and population genetic processes, including fertilization, dispersal, and colonization dynamics, host-symbiont interactions, and secondary metabolite production. Unlike most other sponges, Amphimedon produce hundreds of asynchronously developing embryos and larvae year-round in distinct, easily accessible brood chambers. Embryogenesis gives rise to larvae with at least a dozen cell types that are segregated into three layers and patterned along the body axis. In this article, we describe some of the methods currently available for studying A. queenslandica, focusing on the analysis of embryos, larvae, and post-larvae.
引言
海绵动物是最早分支的后生动物之一。除了经历复杂的发育和分化外,它们还能通过干细胞进行再生,并能区分自我与非自我(“异体识别”),这使它们成为一系列后生动物特有的过程的有用比较模型。对这些过程的分子分析有可能揭示所有现存动物共有的古老同源性以及支撑后生动物多细胞性的关键基因组创新。昆士兰扁海绵(多孔动物门,寻常海绵纲,单轴海绵目,尼法海绵科)是第一个基因组被测序、组装和注释的多孔动物代表。昆士兰扁海绵体现了许多固着和定居的海洋无脊椎动物(如珊瑚、海鞘、苔藓虫)的特征:它们在浮游幼虫阶段进行扩散,在同种个体附近定居,抵御潜在的竞争者(包括不相容的基因型),并确保怀卵由同种精子受精。利用来自昆士兰扁海绵的基因组和表达序列标签(EST)资源,可以将功能基因组方法应用于广泛的生态和群体遗传过程,包括受精、扩散和定殖动态、宿主 - 共生体相互作用以及次生代谢产物的产生。与大多数其他海绵不同,昆士兰扁海绵全年在独特且易于观察的育幼室中产生数百个异步发育的胚胎和幼虫。胚胎发育产生具有至少十二种细胞类型的幼虫,这些细胞类型被分为三层并沿身体轴形成图案。在本文中,我们描述了目前可用于研究昆士兰扁海绵的一些方法,重点是对胚胎、幼虫和幼体后的分析。