Suppr超能文献

在结构基因组学环境中对传染病靶点进行片段筛选。

Fragment screening of infectious disease targets in a structural genomics environment.

作者信息

Begley Darren W, Davies Douglas R, Hartley Robert C, Edwards Thomas E, Staker Bart L, Van Voorhis Wesley C, Myler Peter J, Stewart Lance J

机构信息

Emerald BioStructures, Bainbridge Island, Washington, USA.

出版信息

Methods Enzymol. 2011;493:533-56. doi: 10.1016/B978-0-12-381274-2.00021-2.

Abstract

Structural genomics efforts have traditionally focused on generating single protein structures of unique and diverse targets. However, a lone structure for a given target is often insufficient to firmly assign function or to drive drug discovery. As part of the Seattle Structural Genomics Center for Infectious Disease (SSGCID), we seek to expand the focus of structural genomics by elucidating ensembles of structures that examine small molecule-protein interactions for selected infectious disease targets. In this chapter, we discuss two applications for small molecule libraries in structural genomics: unbiased fragment screening, to provide inspiration for lead development, and targeted, knowledge-based screening, to confirm or correct the functional annotation of a given gene product. This shift in emphasis results in a structural genomics effort that is more engaged with the infectious disease research community, and one that produces structures of greater utility to researchers interested in both protein function and inhibitor development. We also describe specific methods for conducting high-throughput fragment screening in a structural genomics context by X-ray crystallography.

摘要

传统上,结构基因组学的工作重点是生成独特且多样的靶标的单个蛋白质结构。然而,给定靶标的单一结构往往不足以确定其功能或推动药物研发。作为西雅图传染病结构基因组学中心(SSGCID)的一部分,我们试图通过阐明针对选定传染病靶标的小分子 - 蛋白质相互作用的结构集合来扩展结构基因组学的重点。在本章中,我们讨论小分子文库在结构基因组学中的两种应用:无偏向性片段筛选,为先导化合物开发提供灵感;以及基于知识的靶向筛选,以确认或校正给定基因产物的功能注释。这种重点的转变使得结构基因组学的工作更紧密地与传染病研究界合作,并且能够产生对蛋白质功能和抑制剂开发感兴趣的研究人员更有用的结构。我们还描述了在结构基因组学背景下通过X射线晶体学进行高通量片段筛选的具体方法。

相似文献

1
Fragment screening of infectious disease targets in a structural genomics environment.
Methods Enzymol. 2011;493:533-56. doi: 10.1016/B978-0-12-381274-2.00021-2.
2
Predicting the success of fragment screening by X-ray crystallography.
Methods Enzymol. 2011;493:91-114. doi: 10.1016/B978-0-12-381274-2.00004-2.
3
The Seattle Structural Genomics Center for Infectious Disease (SSGCID).
Infect Disord Drug Targets. 2009 Nov;9(5):493-506. doi: 10.2174/187152609789105687.
5
Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei.
J Struct Funct Genomics. 2011 Jul;12(2):63-76. doi: 10.1007/s10969-011-9102-6. Epub 2011 Feb 26.
6
Structural genomics approach to drug discovery for Mycobacterium tuberculosis.
Curr Opin Microbiol. 2009 Jun;12(3):318-25. doi: 10.1016/j.mib.2009.04.006. Epub 2009 May 28.
8
Fragment screening using X-ray crystallography.
Top Curr Chem. 2012;317:33-59. doi: 10.1007/128_2011_179.
9
Structural genomics and drug discovery for infectious diseases.
Infect Disord Drug Targets. 2009 Nov;9(5):507-17. doi: 10.2174/187152609789105713.
10
Structural genomics of infectious disease drug targets: the SSGCID.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Sep 1;67(Pt 9):979-84. doi: 10.1107/S1744309111029204. Epub 2011 Aug 13.

引用本文的文献

1
Naegleria fowleri: Protein structures to facilitate drug discovery for the deadly, pathogenic free-living amoeba.
PLoS One. 2021 Mar 24;16(3):e0241738. doi: 10.1371/journal.pone.0241738. eCollection 2021.
2
Recent contributions of structure-based drug design to the development of antibacterial compounds.
Curr Opin Microbiol. 2015 Oct;27:133-8. doi: 10.1016/j.mib.2015.09.003.
3
Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Sep 1;67(Pt 9):1060-9. doi: 10.1107/S1744309111014436. Epub 2011 Aug 13.
4
Structural genomics of infectious disease drug targets: the SSGCID.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Sep 1;67(Pt 9):979-84. doi: 10.1107/S1744309111029204. Epub 2011 Aug 13.
5
Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei.
J Struct Funct Genomics. 2011 Jul;12(2):63-76. doi: 10.1007/s10969-011-9102-6. Epub 2011 Feb 26.

本文引用的文献

1
Fragment screening by surface plasmon resonance.
ACS Med Chem Lett. 2010 Feb 4;1(1):44-8. doi: 10.1021/ml900002k. eCollection 2010 Apr 8.
2
Structural biology in fragment-based drug design.
Curr Opin Struct Biol. 2010 Aug;20(4):497-507. doi: 10.1016/j.sbi.2010.04.003. Epub 2010 May 12.
3
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.
4
Adding calorimetric data to decision making in lead discovery: a hot tip.
Nat Rev Drug Discov. 2010 Jan;9(1):23-7. doi: 10.1038/nrd3054. Epub 2009 Dec 4.
5
Hit triage using efficiency indices after screening of compound libraries in drug discovery.
Curr Top Med Chem. 2009;9(18):1718-24. doi: 10.2174/156802609790102365.
7
The role of medical structural genomics in discovering new drugs for infectious diseases.
PLoS Comput Biol. 2009 Oct;5(10):e1000530. doi: 10.1371/journal.pcbi.1000530. Epub 2009 Oct 26.
10
The Seattle Structural Genomics Center for Infectious Disease (SSGCID).
Infect Disord Drug Targets. 2009 Nov;9(5):493-506. doi: 10.2174/187152609789105687.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验