Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
Nanoscale. 2011 Apr;3(4):1881-6. doi: 10.1039/c0nr00912a. Epub 2011 Mar 3.
We perform coarse-grained molecular dynamics simulations of self-standing nanoparticle membranes observed in recent experiments (K. E. Mueggenburg et al., Nat. Mater., 2007, 6, 656). In order to make our simulations feasible, we model 2-3 times smaller gold nanoparticles (core radius of r(core) ≈ 0.8 nm) covered with alkanethiol ligands (length of l(ligand) ≈ 0.5-2.6 nm). We study the structure, stability, and mechanical properties of these membranes and show that these characteristics are controlled by the ratio of R(LC) = l(ligand)/r(core). For R(LC) ≈ 0.6, the ligated nanoparticles form well ordered monolayers with hexagonal packing, in agreement with the experiments (R(LC) ≈ 0.44). For R(LC) ≈ 1.6, the nanoparticles form less organized multilayers, which are more stable and flexible. We show that these membranes could potentially form stable capsules for molecular storage and delivery.
我们对最近实验中观察到的自支撑纳米颗粒膜进行了粗粒化分子动力学模拟(K. E. Mueggenburg 等人,《自然·材料》,2007 年,6 期,656)。为了使我们的模拟可行,我们对覆盖有烷硫醇配体的 2-3 倍小的金纳米颗粒(核半径 r(core)≈0.8nm)进行建模(配体长度 l(ligand)≈0.5-2.6nm)。我们研究了这些膜的结构、稳定性和机械性能,并表明这些特性由 R(LC) = l(ligand)/r(core)的比值控制。对于 R(LC)≈0.6,键合的纳米颗粒形成具有六方堆积的规则有序单层,与实验结果一致(R(LC)≈0.44)。对于 R(LC)≈1.6,纳米颗粒形成组织化程度较低的多层膜,这些膜更稳定且具有柔韧性。我们表明,这些膜可能会形成用于分子存储和输送的稳定胶囊。