Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy.
Neural Netw. 2011 Jun;24(5):440-56. doi: 10.1016/j.neunet.2011.02.002. Epub 2011 Feb 13.
Echo State Networks (ESNs) constitute an emerging approach for efficiently modeling Recurrent Neural Networks (RNNs). In this paper we investigate some of the main aspects that can be accounted for the success and limitations of this class of models. In particular, we propose complementary classes of factors related to contractivity and architecture of reservoirs and we study their relative relevance. First, we show the existence of a class of tasks for which ESN performance is independent of the architectural design. The effect of the Markovian factor, characterizing a significant class within these cases, is shown by introducing instances of easy/hard tasks for ESNs featured by contractivity of reservoir dynamics. In the complementary cases, for which architectural design is effective, we investigate and decompose the aspects of network design that allow a larger reservoir to progressively improve the predictive performance. In particular, we introduce four key architectural factors: input variability, multiple time-scales dynamics, non-linear interactions among units and regression in an augmented feature space. To investigate the quantitative effects of the different architectural factors within this class of tasks successfully approached by ESNs, variants of the basic ESN model are proposed and tested on instances of datasets of different nature and difficulty. Experimental evidences confirm the role of the Markovian factor and show that all the identified key architectural factors have a major role in determining ESN performances.
回声状态网络 (ESN) 是一种新兴的有效模拟递归神经网络 (RNN) 的方法。在本文中,我们研究了可以解释这类模型成功和局限性的一些主要方面。特别是,我们提出了与储层的收缩性和结构相关的补充类因素,并研究了它们的相对相关性。首先,我们展示了存在一类任务,其中 ESN 的性能与体系结构设计无关。通过引入具有储层动力学收缩性的 ESN 的易/难任务实例,证明了 Markovian 因子的作用,该因子刻画了这些情况下的一个重要类别。在互补的情况下,体系结构设计是有效的,我们研究并分解了允许更大储层逐步提高预测性能的网络设计方面。特别是,我们引入了四个关键的体系结构因素:输入可变性、多个时间尺度动态、单元之间的非线性相互作用以及在增强特征空间中的回归。为了研究在 ESN 成功处理的这一类任务中不同体系结构因素的定量影响,提出了基本 ESN 模型的变体,并在不同性质和难度的数据集实例上进行了测试。实验证据证实了 Markovian 因子的作用,并表明所有确定的关键体系结构因素在确定 ESN 性能方面都起着重要作用。