Suppr超能文献

澳大利亚主动脉瓣置换术后早期死亡率预测模型。

An Australian risk prediction model for determining early mortality following aortic valve replacement.

机构信息

Department of Epidemiology and Preventive Medicine, Monash University, The Alfred Centre, 99 Commercial Road, Melbourne, VIC 3004, Australia.

出版信息

Eur J Cardiothorac Surg. 2011 Jun;39(6):815-21. doi: 10.1016/j.ejcts.2011.01.060. Epub 2011 Mar 3.

Abstract

OBJECTIVE

To develop a multivariable logistic risk model for predicting early mortality following aortic valve replacement (AVR) in adults, and to compare its performance against existing AVR-dedicated models.

METHODS

Prospectively collected data from the Australasian Society of Cardiac and Thoracic Surgeons (ASCTS) database project were used. Thirty-five preoperative variables from AVR literature were considered for analysis by chi-square method and multiple logistic regression. Using the bootstrap re-sampling technique for variable selection, five plausible models were identified. Based on models' calibration, discrimination and predictive capacity during n-fold validation, a final model, the AVR-Score, was chosen. An additive score, derived from the final model, was also validated externally in a consecutive cohort. The performance of AVR-dedicated risk models from the North West Quality Improvement Program (NWQIP) and the Northern New England Cardiovascular Study (NNE) groups were also assessed using the receiver operating characteristic (ROC) curve and the Hosmer-Lemeshow (H-L) chi-square test.

RESULTS

Between July 2001 and June 2008, a total of 3544 AVR procedures were performed. Early mortality was 4.15%. The AVR-Score contained the following predictors: age, New York Heart Association class, left main disease, infective endocarditis, cerebrovascular disease, renal dysfunction, previous cardiac surgery and estimated ejection fraction. Our final model (AVR-Score) obtained an average area under ROC curve of 0.78 (95% confidence interval (CI): 0.76, 0.80) and an H-L p-value of 0.41 (p>0.05) during internal validation, indicating good discrimination and calibration capacity. External validation of the additive score on a consecutive cohort of 1268 procedures produced an ROC of 0.73 (0.62, 0.84) and an H-L p-value of 0.48 (p>0.05). The NWQIP and NNE risk models achieved acceptable discrimination of ROC of 0.77 (0.73, 0.81). However, both models obtained H-L p-values of 0.002 (p<0.05), indicating a poor fit in our cohort.

CONCLUSION

Existing AVR-dedicated risk models were deemed inappropriate for risk prediction in the Australian population. A preoperative risk model was developed using prospective data from a contemporary AVR cohort.

摘要

目的

开发一个用于预测成人主动脉瓣置换术(AVR)后早期死亡率的多变量逻辑风险模型,并将其性能与现有的 AVR 专用模型进行比较。

方法

使用来自澳大利亚心脏和胸外科协会(ASCTS)数据库项目的前瞻性收集的数据。通过卡方检验和多变量逻辑回归对 AVR 文献中的 35 个术前变量进行分析。使用自举重采样技术进行变量选择,确定了五个合理的模型。基于模型在 n 倍验证期间的校准、区分和预测能力,选择了一个最终模型,即 AVR-Score。还在连续队列中验证了从最终模型导出的加性评分。还使用接受者操作特征(ROC)曲线和 Hosmer-Lemeshow(H-L)卡方检验评估了来自西北质量改进计划(NWQIP)和新英格兰北部心血管研究(NNE)组的 AVR 专用风险模型的性能。

结果

2001 年 7 月至 2008 年 6 月期间,共进行了 3544 例 AVR 手术。早期死亡率为 4.15%。AVR-Score 包含以下预测因子:年龄、纽约心脏协会(NYHA)分级、左主干病变、感染性心内膜炎、脑血管疾病、肾功能不全、既往心脏手术和估计射血分数。我们的最终模型(AVR-Score)在内部验证期间获得了平均 ROC 曲线下面积为 0.78(95%置信区间(CI):0.76,0.80)和 H-L p 值为 0.41(p>0.05),表明具有良好的区分和校准能力。对 1268 例连续队列的加性评分进行外部验证,产生了 ROC 为 0.73(0.62,0.84)和 H-L p 值为 0.48(p>0.05)。NWQIP 和 NNE 风险模型的 ROC 达到了可接受的区分度为 0.77(0.73,0.81)。然而,两个模型的 H-L p 值均为 0.002(p<0.05),表明在我们的队列中拟合不佳。

结论

现有的 AVR 专用风险模型被认为不适合澳大利亚人群的风险预测。使用来自当代 AVR 队列的前瞻性数据开发了一个术前风险模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验