Suppr超能文献

水相分离诱导的膜纳米管,并通过自发曲率稳定。

Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature.

机构信息

Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.

出版信息

Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4731-6. doi: 10.1073/pnas.1015892108. Epub 2011 Mar 7.

Abstract

Tubular membrane structures are widespread in eukaryotic cells, but the mechanisms underlying their formation and stability are not well understood. Previous work has focused on tube extrusion from cells and model membranes under the application of external forces. Here, we present novel membrane/polymer systems, where stable tubes form in the absence of externally applied forces. Solutions of two water-soluble polymers, polyethylene glycol and dextran, were encapsulated in giant lipid vesicles, cell-size model systems. Hypertonic deflation induced phase separation of the enclosed solution. The excess membrane area created during the deflation process was stored in a large number of membrane nanotubes inside the vesicle. The tubes had a diameter below optical resolution and became visible only when fluorescently labeled. The tubes were rather stable: In the absence of external forces, they existed for several days. A theoretical analysis of the shapes of the deflated vesicles reveals that these shapes would be unstable if the membranes had no spontaneous curvature. Using the large separation of length scales between the tube diameter and the overall size of the vesicles, the spontaneous curvature can be calculated and is found to be about -1/(240 nm) for a certain range of polymer concentrations. The nanotubes could also be retracted back into the mother vesicle by increasing the membrane tension via micropipette aspiration of the vesicle. Membrane tubes, which can form and be retracted easily, should be relevant for lipid storage in cells.

摘要

管状膜结构在真核细胞中广泛存在,但它们的形成和稳定性的机制还不是很清楚。以前的工作主要集中在细胞和模型膜在外力作用下的管挤出。在这里,我们提出了新的膜/聚合物体系,在没有外部力的情况下可以形成稳定的管。两种水溶性聚合物,聚乙二醇和葡聚糖的溶液被包裹在巨大的脂质泡中,这是细胞大小的模型系统。高渗去泡会引起封闭溶液的相分离。去泡过程中产生的多余膜面积储存在泡内的大量膜纳米管中。这些管子的直径低于光学分辨率,只有在荧光标记时才可见。这些管子相当稳定:在没有外力的情况下,它们可以存在几天。对去泡泡的形状的理论分析表明,如果膜没有自发曲率,这些形状将是不稳定的。利用管子直径和泡的整体尺寸之间的大尺度分离,自发曲率可以被计算出来,并且对于一定范围的聚合物浓度,发现自发曲率约为-1/(240nm)。通过微管吸吮泡来增加膜张力,纳米管也可以缩回母泡中。容易形成和缩回的管状膜应该与细胞中的脂质储存有关。

相似文献

1
Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature.
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4731-6. doi: 10.1073/pnas.1015892108. Epub 2011 Mar 7.
2
Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature.
Faraday Discuss. 2013;161:305-31; discussion 419-59. doi: 10.1039/c2fd20105d.
3
Membrane nanotubes transform into double-membrane sheets at condensate droplets.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2321579121. doi: 10.1073/pnas.2321579121. Epub 2024 Jun 20.
4
Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes.
ACS Nano. 2016 Jan 26;10(1):463-74. doi: 10.1021/acsnano.5b05377. Epub 2015 Nov 30.
5
Giant Vesicles Encapsulating Aqueous Two-Phase Systems: From Phase Diagrams to Membrane Shape Transformations.
Front Chem. 2019 Apr 9;7:213. doi: 10.3389/fchem.2019.00213. eCollection 2019.
6
Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases.
J Am Chem Soc. 2013 May 8;135(18):6822-5. doi: 10.1021/ja402762e. Epub 2013 Apr 23.
8
The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation.
Proc Natl Acad Sci U S A. 2018 May 29;115(22):5756-5761. doi: 10.1073/pnas.1722320115. Epub 2018 May 14.
9
Super-Resolution Imaging of Highly Curved Membrane Structures in Giant Vesicles Encapsulating Molecular Condensates.
Adv Mater. 2022 Jan;34(4):e2106633. doi: 10.1002/adma.202106633. Epub 2021 Dec 7.
10
Membrane protrusion coarsening and nanotubulation within giant unilamellar vesicles.
J Am Chem Soc. 2011 Nov 16;133(45):18046-9. doi: 10.1021/ja207536a. Epub 2011 Oct 21.

引用本文的文献

1
A Generalized Helfrich Free Energy Framework for Multicomponent Fluid Membranes.
Membranes (Basel). 2025 Jun 17;15(6):182. doi: 10.3390/membranes15060182.
2
Condensate-membrane interactions shape membranes, tune cytoskeletal assembly, and localize mRNAs.
Curr Opin Cell Biol. 2025 Aug;95:102540. doi: 10.1016/j.ceb.2025.102540. Epub 2025 May 26.
3
Regulating Biocondensates within Synthetic Cells via Segregative Phase Separation.
ACS Nano. 2025 Jun 10;19(22):20550-20563. doi: 10.1021/acsnano.4c18971. Epub 2025 Apr 28.
5
Membrane nanotubes transform into double-membrane sheets at condensate droplets.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2321579121. doi: 10.1073/pnas.2321579121. Epub 2024 Jun 20.
6
Lipid Membrane Topographies Are Regulators for the Spatial Distribution of Liquid Protein Condensates.
Nano Lett. 2024 Apr 17;24(15):4330-4335. doi: 10.1021/acs.nanolett.3c04169. Epub 2024 Apr 5.
7
The reproduction process of Gram-positive protocells.
Sci Rep. 2024 Mar 25;14(1):7075. doi: 10.1038/s41598-024-57369-4.
8
Aqueous Two-Phase Systems within Selectively Permeable Vesicles.
ACS Macro Lett. 2023 Aug 15;12(8):1132-1137. doi: 10.1021/acsmacrolett.3c00341. Epub 2023 Jul 27.
9
Elucidating the Morphology of the Endoplasmic Reticulum: Puzzles and Perspectives.
ACS Nano. 2023 Jul 11;17(13):11957-11968. doi: 10.1021/acsnano.3c01338. Epub 2023 Jun 28.
10
Wetting and complex remodeling of membranes by biomolecular condensates.
Nat Commun. 2023 May 22;14(1):2809. doi: 10.1038/s41467-023-37955-2.

本文引用的文献

1
Dishevelled: a protein that functions in living cells by phase separating.
Soft Matter. 2007 May 23;3(6):680-684. doi: 10.1039/b618126k.
2
A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy.
J Phys Condens Matter. 2006 Jul 19;18(28):S1151-76. doi: 10.1088/0953-8984/18/28/S04. Epub 2006 Jun 28.
3
Intrinsic contact angle of aqueous phases at membranes and vesicles.
Phys Rev Lett. 2009 Dec 4;103(23):238103. doi: 10.1103/PhysRevLett.103.238103. Epub 2009 Dec 2.
4
GM1 structure determines SV40-induced membrane invagination and infection.
Nat Cell Biol. 2010 Jan;12(1):11-8; sup pp 1-12. doi: 10.1038/ncb1999. Epub 2009 Dec 20.
5
Transition from complete to partial wetting within membrane compartments.
J Am Chem Soc. 2008 Sep 17;130(37):12252-3. doi: 10.1021/ja8048496. Epub 2008 Aug 20.
6
Positioning lipid membrane domains in giant vesicles by micro-organization of aqueous cytoplasm mimic.
J Am Chem Soc. 2008 Jun 11;130(23):7400-6. doi: 10.1021/ja710746d. Epub 2008 May 15.
7
Ultrastructure of the mitochondrion and its bearing on function and bioenergetics.
Antioxid Redox Signal. 2008 Aug;10(8):1313-42. doi: 10.1089/ars.2007.2000.
8
Exiting the Golgi complex.
Nat Rev Mol Cell Biol. 2008 Apr;9(4):273-84. doi: 10.1038/nrm2378.
9
Eukaryotic membrane tethers revisited using magnetic tweezers.
Phys Biol. 2007 Apr 19;4(2):67-78. doi: 10.1088/1478-3975/4/2/001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验