Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, France.
Nanoscale. 2011 May;3(5):2015-22. doi: 10.1039/c0nr01000f. Epub 2011 Mar 8.
A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 ± 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing.
在开发 YAG:Ce 纳米粒子作为白光 LED 中的光转换器和生物标记物方面,存在一个重大障碍,即难以找到能够同时控制结构、粒径和粒径分布的制备条件,同时保持体相样品的光学性能。制备条件通常涉及前体的高温处理(高达 1400°C),这会导致粒径增大和团聚,并导致 Ce(iii)氧化为 Ce(iv)。我们在此报告一种我们称之为保护退火的方法,该方法允许在高达 1000°C 的温度下对预成型的前体颗粒进行热处理,同时保持其小尺寸和分散状态。在第一步中,通过甘醇热反应制备原始纳米粒子,得到 YAG 和勃姆石结晶相的混合物。然后将预成型的纳米粒子分散在多孔二氧化硅中。在 1000°C 下对复合材料进行退火,然后用氢氟酸溶解无定形二氧化硅,以将退火后的颗粒回收为胶体分散体。这种简单的方法允许在保持其小尺寸的情况下完成 YAG 的结晶。Ce 离子的氧化还原态可以通过退火气氛来控制。所得的 YAG:Ce 颗粒(尺寸为 60±10nm)可以分散在几乎透明的水性悬浮液中,发光量子产率为 60%。可以使用气溶胶喷涂将基于 YAG:Ce 纳米粒子的透明微米厚薄膜沉积在玻璃基底上。用保护退火策略制备的颗粒形成的薄膜在光稳定性方面明显优于未经退火的颗粒。