IFF, FZ Jülich, D-52425 Jülich, Germany.
J Phys Condens Matter. 2010 Jul 7;22(26):265004. doi: 10.1088/0953-8984/22/26/265004. Epub 2010 Jun 7.
We study fluid dynamics at the interface between elastic solids with randomly rough surfaces. The contact mechanics model of Persson is used to take into account the elastic interaction between the solid walls, and the Bruggeman effective medium theory to account for the influence of the disorder on the fluid flow. We calculated the flow tensor which determines the pressure flow factor and, for example, the leak rate of static seals. It is shown how the perturbation treatment of Tripp can be extended to arbitrary order in the ratio between the root-mean-square roughness amplitude and the average interfacial surface separation. We introduce a matrix D(ζ), determined by the surface roughness power spectrum, which can be used to describe the anisotropy of the surface at any magnification ζ. Results are presented for the asymmetry factor γ(ζ) (generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.
我们研究了具有随机粗糙表面的弹性固体界面处的流体动力学。采用 Persson 的接触力学模型来考虑固体壁之间的弹性相互作用,采用 Bruggeman 有效介质理论来考虑无序对流体流动的影响。我们计算了流动张量,该张量决定了压力流动因子,例如,静态密封件的泄漏率。展示了如何将 Tripp 的微扰处理扩展到均方根粗糙度幅度与平均界面表面分离之间的任意比值的任意阶。我们引入了一个矩阵 D(ζ),由表面粗糙度功率谱确定,该矩阵可用于在任何放大倍数 ζ 下描述表面的各向异性。给出了研磨钢和喷砂 PMMA 表面的非对称因子 γ(ζ)(广义 Peklenik 数)的结果。