Fachbereich Physik, Universit¨at Konstanz, D-78457 Konstanz, Germany.
J Phys Condens Matter. 2010 Sep 15;22(36):363101. doi: 10.1088/0953-8984/22/36/363101. Epub 2010 Aug 18.
Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states.
胶体分散体在日常生活中很常见,是一类重要的复杂流体。对于许多商业产品和工业过程来说,通过调整组成部分之间的微观相互作用来控制和操纵分散体的宏观流动响应的能力尤为重要。实现这一目标的重要一步是开发强大的理论方法,以便从第一性原理预测在外部流作用下具有明确定义模型系统的流变学和非平衡微观结构。在这篇综述中,我们概述了一些有前途的理论方法及其试图描述的现象,为简单起见,我们专注于胶体粒子通过强排斥、球对称相互作用相互作用的系统。在介绍各种理论时,我们将首先考虑低体积分数系统,因为可以从中推导出一些精确的结果,然后再考虑中间和高体积分数状态,这些状态既具有最有趣的物理性质,也具有最具挑战性的技术要求。在高体积分数区域,特别强调动态停滞状态的流变学。