Experimentalphysik II, Universität Bayreuth, D-95440 Bayreuth, Germany.
J Phys Condens Matter. 2010 Sep 15;22(36):365101. doi: 10.1088/0953-8984/22/36/365101. Epub 2010 Aug 11.
We introduce a three-parameter step-response function which is based on a generalization of the Cole-Davidson (CD) and Kohlrausch (K) functions, and which provides a highly flexible susceptibility description for viscous liquids. A second parameter α characterizing the overall width, in addition to a parameter β determining the high-frequency behavior of the susceptibility, allows for a continuous change of the spectral shape from the CD-type to the K-type. We prove that the function fulfills mathematical conditions required for a step-response function. When applying the function to interpolate dielectric spectra of neat (pure) glass formers, it is possible to keep the high-frequency parameter β temperature-independent while varying the parameter α to account for the change of the overall width. This analysis might suggest that the failure of frequency-temperature superposition in glass formers is reflected by a broadening in the low-frequency region instead of in the high-frequency one.
我们引入了一个三参数阶跃响应函数,它基于科尔-戴维森(CD)和科尔劳施(K)函数的推广,为粘性液体提供了高度灵活的磁化率描述。除了决定磁化率高频行为的参数β之外,参数α还可以表征整体宽度,这允许从 CD 型到 K 型连续改变谱形状。我们证明了该函数满足阶跃响应函数所需的数学条件。当应用该函数对纯(纯)玻璃形成体的介电谱进行插值时,保持高频参数β与温度无关,同时改变参数α以解释整体宽度的变化。这种分析可能表明,玻璃形成体中频率-温度超位的失效是由低频区域而不是高频区域的展宽反映的。