Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
J Phys Condens Matter. 2010 Oct 20;22(41):414102. doi: 10.1088/0953-8984/22/41/414102. Epub 2010 Sep 30.
We present a mean-field theory for charged polymer chains in an external electrostatic field in the weak and strong coupling limits. We apply the theory to describe the statistical mechanics of flexible polyelectrolyte chains in a hexagonal columnar lattice of stiff cylindrical macroions, such as DNA, in a bathing solution of a uni-univalent salt (e.g. NaCl). The salt effects are first described in the Debye-Hückel framework. This yields the macroion electrostatic field in the screened Coulomb form, which we take to represent the mean field into which the chains are immersed. We introduce the Green's function for the polyelectrolyte chains and derive the corresponding Edwards equation which we solve numerically in the Wigner-Seitz cylindrical cell using the ground state dominance ansatz. The solutions indicate the presence of polyelectrolyte bridging, which results in a like-charge attraction between stiff macroions. Then we reformulate the Edwards theory for the strong coupling case and use the standard Poisson-Boltzmann picture to describe the salt solution. We begin with the free energy which we minimize to obtain the Euler-Lagrange equations. The solutions yield self-consistently determined monomer density and electrostatic fields. We furthermore calculate the free energy density as well as the total osmotic pressure in the system. We again show that bridging implicates like-charge attractions of entropic origin between stiff cylindrical macroions. By analyzing the osmotic pressure we demonstrate that, in certain parts of the parameter space, a phase transition occurs between two phases of the same hexagonal symmetry.
我们提出了一种在外电场作用下的弱耦合和强耦合极限下的带电聚合物链的平均场理论。我们将该理论应用于描述在刚性圆柱状大离子的六方柱状晶格中柔性聚电解质链的统计力学,例如 DNA,在单一对一盐(例如 NaCl)的浴液中。首先在德拜-休克尔框架中描述盐效应。这产生了屏蔽库仑形式的大离子电场,我们将其视为链浸入的平均场。我们引入了聚电解质链的格林函数,并推导出相应的爱德华斯方程,我们使用基态优势假设在威格纳-塞茨圆柱单元中数值求解。这些解表明存在聚电解质桥接,导致刚性大离子之间的同电荷吸引。然后我们重新制定了强耦合情况下的爱德华斯理论,并使用标准的泊松-玻尔兹曼图像来描述盐溶液。我们从自由能开始,通过最小化自由能来获得欧拉-拉格朗日方程。解产生自洽确定的单体密度和电场。我们进一步计算了系统中的自由能密度和总渗透压。我们再次表明,桥接暗示了刚性圆柱状大离子之间具有熵起源的同电荷吸引力。通过分析渗透压,我们证明在某些参数空间中,相同六方对称性的两个相之间发生了相变。