Department of Biomedical Engineering, University of California , Davis, California, United States.
Bioconjug Chem. 2011 Apr 20;22(4):808-18. doi: 10.1021/bc100478k. Epub 2011 Mar 9.
Solid lipid nanoparticles (SLNs) are submicrometer (1-1000 nm) colloidal carriers developed in the past decade as an alternative system to traditional carriers (emulsions, liposomes, and polymeric nanoparticles) for intravenous applications. Because of their potential as drug carriers, there is much interest in understanding the in vivo biodistribution of SLNs following intravenous (i.v.) injection. Positron emission tomography (PET) is an attractive method for investigating biodistribution but requires a radiolabeled compound. In this work, we describe a method to radiolabel SLN for in vivo PET studies. A copper specific chelator, 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid (BAT), conjugated with a synthetic lipid, was incorporated into the SLN. Following incubation with (64)CuCl(2) for 1 h at 25 °C in 0.1 M NH(4)OAc buffer (pH 5.5), the SLNs (∼150 nm) were successfully radiolabeled with (64)Cu (66.5% radiolabeling yield), exhibiting >95% radiolabeled particles following purification. The (64)Cu-SLNs were delivered intravenously to mice and imaged with PET at 0.5, 3, 20, and 48 h post injection. Gamma counting was utilized post imaging to confirm organ distributions. Tissue radioactivity (% injected dose/gram, %ID/g), obtained by quantitative analysis of the images, suggests that the (64)Cu-SLNs are circulating in the bloodstream after 3 h (blood half-life ∼1.4 h), but are almost entirely cleared by 48 h. PET and gamma counting demonstrate that approximately 5-7%ID/g (64)Cu-SLNs remain in the liver at 48 h post injection. Stability assays confirm that copper remains associated with the SLN over the 48 h time period and that the biodistribution patterns observed are not from free, dissociated copper. Our results indicate that SLNs can be radiolabeled with (64)Cu, and their biodistribution can be quantitatively evaluated by in vivo PET imaging and ex vivo gamma counting.
固体脂质纳米粒 (SLN) 是亚微米级 (1-1000nm) 的胶体载体,是过去十年中开发的替代传统载体 (乳液、脂质体和聚合物纳米粒) 的系统,可用于静脉内应用。由于它们作为药物载体的潜力,人们对静脉内 (i.v.) 注射后 SLN 的体内生物分布非常感兴趣。正电子发射断层扫描 (PET) 是一种研究生物分布的有吸引力的方法,但需要放射性标记化合物。在这项工作中,我们描述了一种用于体内 PET 研究的 SLN 放射性标记方法。一种铜特异性螯合剂,6-[p-(溴乙酰氨基)苄基]-1,4,8,11-四氮杂环十四烷-N,N',N'',N'''-四乙酸 (BAT),与合成脂质偶联,被掺入 SLN 中。在 25°C 下于 0.1 M NH(4)OAc 缓冲液 (pH 5.5) 中与 (64)CuCl(2) 孵育 1 h 后,成功地用 (64)Cu 对 SLN(∼150nm) 进行了放射性标记(66.5%的放射性标记收率),经过纯化后,超过 95%的放射性标记颗粒。将 (64)Cu-SLN 静脉内递送至小鼠体内,并在注射后 0.5、3、20 和 48 h 时用 PET 进行成像。成像后进行伽马计数以确认器官分布。通过对图像进行定量分析获得的组织放射性 (注入剂量/克的百分比,%ID/g) 表明,(64)Cu-SLN 在 3 h 后(血液半衰期约为 1.4 h)在血液中循环,但在 48 h 时几乎完全清除。PET 和伽马计数表明,在注射后 48 h 时,约 5-7%ID/g 的 (64)Cu-SLN 仍留在肝脏中。稳定性试验证实,在 48 h 时间内铜仍与 SLN 结合,并且观察到的生物分布模式不是来自游离的、游离的铜。我们的结果表明,SLN 可以用 (64)Cu 进行放射性标记,并且可以通过体内 PET 成像和体外伽马计数对其生物分布进行定量评估。