Suppr超能文献

用 64Cu 对固体脂质纳米粒进行正电子发射断层扫描成像的新方法。

Novel method to label solid lipid nanoparticles with 64cu for positron emission tomography imaging.

机构信息

Department of Biomedical Engineering, University of California , Davis, California, United States.

出版信息

Bioconjug Chem. 2011 Apr 20;22(4):808-18. doi: 10.1021/bc100478k. Epub 2011 Mar 9.

Abstract

Solid lipid nanoparticles (SLNs) are submicrometer (1-1000 nm) colloidal carriers developed in the past decade as an alternative system to traditional carriers (emulsions, liposomes, and polymeric nanoparticles) for intravenous applications. Because of their potential as drug carriers, there is much interest in understanding the in vivo biodistribution of SLNs following intravenous (i.v.) injection. Positron emission tomography (PET) is an attractive method for investigating biodistribution but requires a radiolabeled compound. In this work, we describe a method to radiolabel SLN for in vivo PET studies. A copper specific chelator, 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid (BAT), conjugated with a synthetic lipid, was incorporated into the SLN. Following incubation with (64)CuCl(2) for 1 h at 25 °C in 0.1 M NH(4)OAc buffer (pH 5.5), the SLNs (∼150 nm) were successfully radiolabeled with (64)Cu (66.5% radiolabeling yield), exhibiting >95% radiolabeled particles following purification. The (64)Cu-SLNs were delivered intravenously to mice and imaged with PET at 0.5, 3, 20, and 48 h post injection. Gamma counting was utilized post imaging to confirm organ distributions. Tissue radioactivity (% injected dose/gram, %ID/g), obtained by quantitative analysis of the images, suggests that the (64)Cu-SLNs are circulating in the bloodstream after 3 h (blood half-life ∼1.4 h), but are almost entirely cleared by 48 h. PET and gamma counting demonstrate that approximately 5-7%ID/g (64)Cu-SLNs remain in the liver at 48 h post injection. Stability assays confirm that copper remains associated with the SLN over the 48 h time period and that the biodistribution patterns observed are not from free, dissociated copper. Our results indicate that SLNs can be radiolabeled with (64)Cu, and their biodistribution can be quantitatively evaluated by in vivo PET imaging and ex vivo gamma counting.

摘要

固体脂质纳米粒 (SLN) 是亚微米级 (1-1000nm) 的胶体载体,是过去十年中开发的替代传统载体 (乳液、脂质体和聚合物纳米粒) 的系统,可用于静脉内应用。由于它们作为药物载体的潜力,人们对静脉内 (i.v.) 注射后 SLN 的体内生物分布非常感兴趣。正电子发射断层扫描 (PET) 是一种研究生物分布的有吸引力的方法,但需要放射性标记化合物。在这项工作中,我们描述了一种用于体内 PET 研究的 SLN 放射性标记方法。一种铜特异性螯合剂,6-[p-(溴乙酰氨基)苄基]-1,4,8,11-四氮杂环十四烷-N,N',N'',N'''-四乙酸 (BAT),与合成脂质偶联,被掺入 SLN 中。在 25°C 下于 0.1 M NH(4)OAc 缓冲液 (pH 5.5) 中与 (64)CuCl(2) 孵育 1 h 后,成功地用 (64)Cu 对 SLN(∼150nm) 进行了放射性标记(66.5%的放射性标记收率),经过纯化后,超过 95%的放射性标记颗粒。将 (64)Cu-SLN 静脉内递送至小鼠体内,并在注射后 0.5、3、20 和 48 h 时用 PET 进行成像。成像后进行伽马计数以确认器官分布。通过对图像进行定量分析获得的组织放射性 (注入剂量/克的百分比,%ID/g) 表明,(64)Cu-SLN 在 3 h 后(血液半衰期约为 1.4 h)在血液中循环,但在 48 h 时几乎完全清除。PET 和伽马计数表明,在注射后 48 h 时,约 5-7%ID/g 的 (64)Cu-SLN 仍留在肝脏中。稳定性试验证实,在 48 h 时间内铜仍与 SLN 结合,并且观察到的生物分布模式不是来自游离的、游离的铜。我们的结果表明,SLN 可以用 (64)Cu 进行放射性标记,并且可以通过体内 PET 成像和体外伽马计数对其生物分布进行定量评估。

相似文献

1
Novel method to label solid lipid nanoparticles with 64cu for positron emission tomography imaging.
Bioconjug Chem. 2011 Apr 20;22(4):808-18. doi: 10.1021/bc100478k. Epub 2011 Mar 9.
3
Imaging cancer using PET--the effect of the bifunctional chelator on the biodistribution of a (64)Cu-labeled antibody.
Nucl Med Biol. 2011 Jan;38(1):29-38. doi: 10.1016/j.nucmedbio.2010.07.003. Epub 2010 Oct 27.
4
Development of Novel PSMA Ligands for Imaging and Therapy with Copper Isotopes.
J Nucl Med. 2020 Jan;61(1):70-79. doi: 10.2967/jnumed.119.229054. Epub 2019 Sep 20.
5
Evaluation of 64Cu labeled GX1: a phage display peptide probe for PET imaging of tumor vasculature.
Mol Imaging Biol. 2012 Feb;14(1):96-105. doi: 10.1007/s11307-011-0479-1.
8
Synthesis and Evaluation of New Generation Cross-Bridged Bifunctional Chelator for (64)Cu Radiotracers.
Inorg Chem. 2015 Sep 8;54(17):8177-86. doi: 10.1021/acs.inorgchem.5b01386. Epub 2015 Aug 19.

引用本文的文献

1
Design and Characterization of Peptide-Conjugated Solid Lipid Nanoparticles for Targeted MRI and SPECT Imaging of Breast Tumors.
ACS Omega. 2025 Apr 22;10(17):17310-17326. doi: 10.1021/acsomega.4c10153. eCollection 2025 May 6.
2
Lipid-Based Nanocarriers: Bridging Diagnosis and Cancer Therapy.
Pharmaceutics. 2024 Sep 1;16(9):1158. doi: 10.3390/pharmaceutics16091158.
3
Liposomes to Cubosomes: The Evolution of Lipidic Nanocarriers and Their Cutting-Edge Biomedical Applications.
ACS Appl Bio Mater. 2024 May 20;7(5):2677-2694. doi: 10.1021/acsabm.4c00153. Epub 2024 Apr 13.
4
Efficacy of Green Synthesized Nanoparticles in Photodynamic Therapy: A Therapeutic Approach.
Int J Mol Sci. 2023 Jun 30;24(13):10931. doi: 10.3390/ijms241310931.
5
Advances in Lung Cancer Treatment Using Nanomedicines.
ACS Omega. 2022 Dec 29;8(1):10-41. doi: 10.1021/acsomega.2c04078. eCollection 2023 Jan 10.
7
Nanomaterial Probes for Nuclear Imaging.
Nanomaterials (Basel). 2022 Feb 9;12(4):582. doi: 10.3390/nano12040582.
8
Recent Progress in Lipid Nanoparticles for Cancer Theranostics: Opportunity and Challenges.
Pharmaceutics. 2021 Jun 7;13(6):840. doi: 10.3390/pharmaceutics13060840.
9
Advantages and Limitations of Current Techniques for Analyzing the Biodistribution of Nanoparticles.
Front Pharmacol. 2018 Aug 14;9:802. doi: 10.3389/fphar.2018.00802. eCollection 2018.
10
Multimodality imaging in nanomedicine and nanotheranostics.
Cancer Biol Med. 2016 Sep;13(3):339-348. doi: 10.20892/j.issn.2095-3941.2016.0055.

本文引用的文献

1
Solid lipid nanoparticles: a modern formulation approach in drug delivery system.
Indian J Pharm Sci. 2009 Jul;71(4):349-58. doi: 10.4103/0250-474X.57282.
2
Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine.
Chem Pharm Bull (Tokyo). 2010 May;58(5):650-5. doi: 10.1248/cpb.58.650.
3
Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages.
Pharm Res. 2010 Aug;27(8):1584-96. doi: 10.1007/s11095-010-0149-z. Epub 2010 Apr 27.
4
A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung.
Eur J Pharm Biopharm. 2010 Jun;75(2):107-16. doi: 10.1016/j.ejpb.2010.02.014. Epub 2010 Mar 3.
7
Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery.
J Microencapsul. 2010;27(1):37-47. doi: 10.3109/02652040902846883.
9
Lipid nanoparticles for parenteral delivery of actives.
Eur J Pharm Biopharm. 2009 Feb;71(2):161-72. doi: 10.1016/j.ejpb.2008.09.003. Epub 2008 Sep 13.
10
Delivery of nanoparticles to the brain detected by fluorescence microscopy.
Eur J Pharm Biopharm. 2008 Oct;70(2):627-32. doi: 10.1016/j.ejpb.2008.05.007. Epub 2008 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验