Suppr超能文献

堆积正方形晶格上的量子自旋 1/2 J1-J2 反铁磁体:有限团簇中的有效场理论研究。

The quantum spin-1/2 J1-J2 antiferromagnet on a stacked square lattice: a study of effective-field theory in a finite cluster.

机构信息

Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000, Manaus-AM, Brazil.

出版信息

J Phys Condens Matter. 2010 Apr 14;22(14):146004. doi: 10.1088/0953-8984/22/14/146004. Epub 2010 Mar 19.

Abstract

The ground state phase diagram of the quantum spin-1/2 Heisenberg antiferromagnet in the presence of nearest-neighbor (J(1)) and next-nearest-neighbor (J(2)) interactions (J(1)-J(2) model) on a stacked square lattice, where we introduce an interlayer coupling through nearest-neighbor bonds of strength J(), is studied within the framework of the differential operator technique. The Hamiltonian is solved by effective-field theory in a cluster with N=4 spins (EFT-4). We obtain the sublattice magnetization m(A) for the ordered phases: antiferromagnetic (AF) and collinear (CAF-collinear antiferromagnetic). We propose a functional for the free energy Ψ(μ)(m(μ)) (μ=A, B) to obtain the phase diagram in the λ-α plane, where λ=J()/J(1) and α=J(2)/J(1). Depending on the values of λ and α, we found different ordered states (AF and CAF) and a disordered state (quantum paramagnetic (QP)). For an intermediate region α(1c)(λ) < α < α(2c)(λ) we observe a QP phase that disappears for λ below some critical value λ(1)≈0.67. For α < α(1c)(λ) and α > α(2c)(λ), and below λ(1), we have the AF and CAF semi-classically ordered states, respectively. At α=α(1c)(λ) a second-order transition between the AF and QP states occurs and at α=α(2c)(λ) a first-order transition between the AF and CAF phases takes place. The boundaries between these ordered phases merge at the critical end point CEP≡(λ(1), α(c)), where α(c)≈0.56. Above this CEP there is again a direct first-order transition between the AF and CAF phases, with a behavior described by the point α(c) independent of λ ≥ λ(1).

摘要

在堆叠正方形晶格上,研究了存在最近邻(J(1))和次近邻(J(2))相互作用(J(1)-J(2)模型)的量子自旋-1/2 海森堡反铁磁体的基态相图,其中通过强度为 J()的最近邻键引入了层间耦合。在微分算子技术的框架内,利用有效场理论对哈密顿量进行了求解。对于有序相:反铁磁(AF)和共线(CAF-共线反铁磁),我们用具有 N=4 个自旋的团簇(EFT-4)得到了亚晶格磁化强度 m(A)。我们提出了一个自由能 Ψ(μ)(m(μ))(μ=A,B)的泛函,以获得 λ-α 平面上的相图,其中 λ=J()/J(1)和 α=J(2)/J(1)。根据 λ 和 α 的值,我们发现了不同的有序态(AF 和 CAF)和无序态(量子顺磁态(QP))。在中间区域 α(1c)(λ) < α < α(2c)(λ) 中,我们观察到 QP 相消失,在 λ 低于某个临界值 λ(1)≈0.67 时。对于 α < α(1c)(λ) 和 α > α(2c)(λ),并且低于 λ(1),我们分别具有 AF 和 CAF 半经典有序态。在 α=α(1c)(λ) 处,AF 和 QP 态之间发生二阶相变,在 α=α(2c)(λ) 处,AF 和 CAF 相之间发生一阶相变。这些有序相之间的边界在临界点 CEP≡(λ(1),α(c))处合并,其中 α(c)≈0.56。在这个 CEP 之上,AF 和 CAF 相之间再次存在直接的一阶相变,其行为由独立于 λ≥λ(1)的点 α(c)描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验