Suppr超能文献

慢性病临床试验中因导入期选择偏倚导致的缺失数据的意向性随机化校正。

Intent-to-randomize corrections for missing data resulting from run-in selection bias in clinical trials for chronic conditions.

作者信息

Berger Vance W, Vali Behrang

机构信息

National Cancer Institute, Bethesda, Maryland, USA.

出版信息

J Biopharm Stat. 2011 Mar;21(2):263-70. doi: 10.1080/10543406.2011.550107.

Abstract

In many clinical trials for chronic conditions a run-in period is used prior to randomization. Often, only those participants who meet certain criteria during the run-in phase go on to get randomized. The others, along with the information that they might have provided, are excluded from the study. This exclusion of the relevant response data from any subsequent study analysis can be considered as resulting in missing data; although quite common in practice, this approach has expectedly been shown to create a bias in favor of the active treatment when this active treatment is used during the run-in. Hence, many randomized clinical trials report overly optimistic results, with the extent of the bias depending in large part on how many otherwise eligible subjects were excluded due to the use of the run-in. If these biased trials are to contribute valid information to medical decision making, then the biases need to be corrected, and this involves accounting for all participants who were intended to be randomized. We propose specific imputation methods for doing so.

摘要

在许多针对慢性病的临床试验中,随机分组前会设置一个导入期。通常,只有那些在导入期符合特定标准的参与者才会继续被随机分组。其他参与者以及他们可能提供的信息则被排除在研究之外。在后续的研究分析中排除这些相关的反应数据可被视为导致了数据缺失;尽管这种做法在实际中很常见,但当在导入期使用活性治疗时,这种方法预期会产生有利于活性治疗的偏差。因此,许多随机临床试验报告的结果过于乐观,偏差程度在很大程度上取决于因使用导入期而被排除的原本符合条件的受试者数量。如果这些有偏差的试验要为医疗决策提供有效的信息,那么就需要纠正偏差,这涉及到对所有打算被随机分组的参与者进行考量。我们提出了具体的插补方法来实现这一点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验