Ellinger M, Koelling M E, Miller D A, Severance F L, Stahl J
Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, MI 49008, USA.
Biol Cybern. 2011 Mar;104(3):185-95. doi: 10.1007/s00422-011-0427-9. Epub 2011 Mar 11.
Studying neurons from an energy efficiency perspective has produced results in the research literature. This paper presents a method that enables computation of low energy input current stimuli that are able to drive a reduced Hodgkin-Huxley neuron model to approximate a prescribed time-varying reference membrane voltage. An optimal control technique is used to discover an input current that optimally minimizes a user selected balance between the square of the input stimulus current (input current 'energy') and the difference between the reference voltage and the membrane voltage (tracking error) over a stimulation period. Selecting reference signals to be membrane voltages produced by the neuron model in response to common types of input currents i(t) enables a comparison between i(t) and the determined optimal current stimulus i*(t). The intent is not to modify neuron dynamics, but through comparison of i(t) and i*(t) provide insight into neuron dynamics. Simulation results for four different bifurcation types demonstrate that this method consistently finds lower energy stimulus currents i*(t) that are able to approximate membrane voltages as produced by higher energy input currents i(t) in this neuron model.
从能量效率的角度研究神经元已经在研究文献中产生了成果。本文提出了一种方法,该方法能够计算低能量输入电流刺激,这些刺激能够驱动简化的霍奇金-赫胥黎神经元模型,以近似规定的随时间变化的参考膜电压。一种最优控制技术被用于发现一种输入电流,该电流在刺激周期内能够最优地最小化用户选择的输入刺激电流的平方(输入电流“能量”)与参考电压和膜电压之间的差值(跟踪误差)之间的平衡。选择参考信号为由神经元模型响应常见类型的输入电流i(t)产生的膜电压,能够对i(t)与确定的最优电流刺激i*(t)进行比较。目的不是修改神经元动力学,而是通过比较i(t)和i*(t)来深入了解神经元动力学。四种不同分岔类型的仿真结果表明,该方法始终能找到较低能量的刺激电流i*(t),这些电流能够在该神经元模型中近似由较高能量输入电流i(t)产生的膜电压。