Suppr超能文献

基于药效团和 3D-QSAR 的计算机筛选探索新型支架作为潜在的 MAO-A 抑制剂。

Exploration of new scaffolds as potential MAO-A inhibitors using pharmacophore and 3D-QSAR based in silico screening.

机构信息

Department of Pharmaceutical Chemistry, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Pune 411 038, Maharashtra, India.

出版信息

Bioorg Med Chem Lett. 2011 Apr 15;21(8):2419-24. doi: 10.1016/j.bmcl.2011.02.072. Epub 2011 Feb 19.

Abstract

Monoamine oxidase-A (MAO-A) inhibitors are of particular importance in the treatment of depressive disorders. Herein described is pharmacophore generation and atom-based 3D-QSAR analysis of previously reported pyrrole based MAO-A inhibitors in order to get insight into their structural requirements responsible for high affinity. The best pharmacophore model generated consisted of four features DHHR: a hydrogen bond donor (D), two hydrophobic groups (H) and an aromatic ring (R). Based on model generated, a statistically valid 3D-QSAR with good predictability was developed. Derived pharmacophore was used as a query to search Zinc 'clean drug-like' database. Hits retrieved were passed progressively through filters like fitness score, predicted activity and docking scores. The survived hits present new scaffolds with a potential for MAO-A inhibition.

摘要

单胺氧化酶-A(MAO-A)抑制剂在治疗抑郁障碍方面具有特别重要的意义。本文描述了基于先前报道的吡咯基 MAO-A 抑制剂的药效团生成和基于原子的 3D-QSAR 分析,以深入了解其负责高亲和力的结构要求。生成的最佳药效团模型由四个特征 DHHR 组成:氢键供体(D)、两个疏水区(H)和一个芳环(R)。基于生成的模型,开发了一个具有良好可预测性的统计有效 3D-QSAR。衍生的药效团被用作查询来搜索 Zinc“干净的类药物”数据库。检索到的命中物依次通过适应性得分、预测活性和对接得分等过滤器进行筛选。幸存的命中物提供了具有 MAO-A 抑制潜力的新骨架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验