Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E08193, Bellaterra, Spain.
ACS Nano. 2011 Apr 26;5(4):2957-63. doi: 10.1021/nn1035872. Epub 2011 Mar 14.
Three-dimensional magnetophotonic crystals (3D-MPCs) are being postulated as appropriate platforms to tailor the magneto-optical spectral response of magnetic materials and to incorporate this functionality in a new generation of optical devices. By infiltrating self-assembled inverse opal structures with monodisperse nickel nanoparticles we have fabricated 3D-MPCs that show a sizable enhancement of the magneto-optical signal at frequencies around the stop-band edges of the photonic crystals. We have established a proper methodology to disentangle the intrinsic magneto-optical spectra from the nonmagnetic optical activity of the 3D-MPCs. The results of the optical and magneto-optical characterization are consistent with a homogeneous magnetic infiltration of the opal structure that gives rise to both a red-shift of the optical bandgap and a modification of the magneto-optical spectral response due to photonic bandgap effects. The results of our investigation demonstrate the potential of 3D-MPCs fabricated following the approach outlined here and offer opportunities to adapt the magneto-optical spectral response at optical frequencies by appropriate design of the opal structure or magnetic field strength.
三维磁光光子晶体(3D-MPCs)被认为是合适的平台,可以调整磁性材料的磁光光谱响应,并将此功能纳入新一代光学器件中。通过用单分散镍纳米粒子渗透自组装的反蛋白石结构,我们制造了 3D-MPCs,在光子晶体的禁带边缘附近的频率处显示出磁光信号的大幅增强。我们已经建立了一种合适的方法,可以将 3D-MPCs 的固有磁光光谱与非磁性光学活性区分开来。光学和磁光特性的结果与蛋白石结构的均匀磁性渗透一致,这导致光学带隙的红移以及由于光子带隙效应而改变磁光光谱响应。我们的研究结果表明,按照这里概述的方法制造的 3D-MPC 具有潜力,并为通过适当设计蛋白石结构或磁场强度来调整光学频率处的磁光光谱响应提供了机会。