Suppr超能文献

倾向评分方法及其在肾脏病学研究中的应用。

Propensity score methods and their application in nephrology research.

机构信息

Department of Medicine, University of Calgary, Calgary, Alberta - Canada.

出版信息

J Nephrol. 2011 May-Jun;24(3):256-62. doi: 10.5301/JN.2011.6429.

Abstract

Propensity score methods are used to control for treatment-selection bias in observational studies. A propensity score reduces a collection of covariates into a single composite score. This score is the probability, or propensity, of receiving a specific treatment conditional on the observed covariates. A propensity score can be applied by either matching subjects on the score, stratification by the propensity score or including the propensity score as a predictor in a multivariable model. This paper focuses on propensity score-matched methods. There are 4 steps in a propensity score-matched analysis. The propensity score is derived, the propensity score-matched sample is constructed, the degree to which matching has balanced observed covariates is assessed and the effect of the treatment on the outcome is estimated. Propensity score methods are often used in observational studies in nephrology, thus understanding their appropriate implementation, strengths and limitations is important.

摘要

倾向评分法用于控制观察性研究中的治疗选择偏倚。倾向评分将一组协变量简化为一个单一的综合评分。该评分是在观察到的协变量条件下接受特定治疗的概率或倾向。可以通过在评分上匹配受试者、按倾向评分分层或将倾向评分作为多变量模型中的预测因子来应用倾向评分。本文重点介绍倾向评分匹配方法。倾向评分匹配分析有 4 个步骤。首先得出倾向评分,然后构建倾向评分匹配样本,评估匹配是否平衡了观察到的协变量,最后估计治疗对结果的影响。倾向评分方法常用于肾脏病学中的观察性研究,因此了解其正确的实施、优势和局限性很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验