Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
J Phys Chem B. 2011 Apr 7;115(13):3392-9. doi: 10.1021/jp112284k. Epub 2011 Mar 15.
Mechanically robust, magnetic nylon-6 nanocomposites reinforced by one-dimensional (1D) carbon nanotube (CNT)-two-dimensional (2D) clay nanoplatelet hybrids have been prepared using a simple melt-compounding technique. The direct iron-catalyzed chemical vapor deposition (CVD) growth of multiwalled CNTs utilizes iron oxide-immobilized clay nanoplatelets as substrates, carrying out in situ intercalation and exfoliation of clay nanoplatelets. By using such a hybridization and coexfoliation method, the as-obtained heterostructured hybrids used without any purification are demonstrated to be ideal and excellent nanofillers for mechanical reinforcement for fabricating nylon-6 nanocomposites, due to their homogeneous dispersion and strong interfacial interaction with the polymer matrix. The nucleation sites provided by the nanohybrids seem to be favorable to the formation of thermodynamically stable α-phase crystals of nylon-6 with much higher stiffness and hardness than γ-form of nylon-6, namely, a silicate-induced crystal transformation from the α-form to the γ-form of nylon-6 was greatly inhibited or "shielded" by the CNT-wrapped clay nanoplatelets. Furthermore, the nanostructured CNT-clay hybrid heterostructures containing residual iron oxide nanoparticles show novel magnetic properties in both bulk solids and polymer nanocomposites. Therefore, this can be probably developed into a facile and practical method to fabricate polymer nanocomposites with high performance and multifunctionality.
采用简单的熔融共混技术制备了一维(1D)碳纳米管(CNT)-二维(2D)粘土纳米片层杂化体增强的机械坚固、磁性尼龙-6 纳米复合材料。多壁 CNT 的直接铁催化化学气相沉积(CVD)生长利用铁氧化物固定的粘土纳米片作为基底,进行原位插层和剥落。通过使用这种杂化和共剥落方法,所获得的杂化体无需任何纯化即可用作机械增强的理想和优异的纳米填料,用于制备尼龙-6 纳米复合材料,这是因为它们具有均匀的分散性和与聚合物基体的强界面相互作用。纳米杂化物提供的成核点似乎有利于形成具有比尼龙-6 的γ-形式更高刚度和硬度的热力学稳定的α-形式晶体,即硅酸盐诱导的晶体从α-形式到尼龙-6 的γ-形式的转变被 CNT 包裹的粘土纳米片层大大抑制或“屏蔽”。此外,含有残留氧化铁纳米颗粒的纳米结构 CNT-粘土杂化结构在块状固体和聚合物纳米复合材料中均表现出新颖的磁性。因此,这可能发展成为一种简便实用的方法,用于制备具有高性能和多功能的聚合物纳米复合材料。