Suppr超能文献

具有任意阶多项式非线性的广义(3 + 1)维薛定谔方程的精确行波解和时空孤子解。

Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.

作者信息

Petrović Nikola Z, Belić Milivoj, Zhong Wei-Ping

机构信息

Department of Physics, Texas A&M University at Qatar, P.O. Box 23874 Doha, Qatar.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Feb;83(2 Pt 2):026604. doi: 10.1103/PhysRevE.83.026604. Epub 2011 Feb 28.

Abstract

We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity.

摘要

我们得到了具有变系数和任意高阶多项式克尔非线性的广义(3 + 1)维非线性薛定谔方程的精确行波解和时空孤子解。针对三次 - 五次和七次模型的特殊情况,给出了用雅可比椭圆函数表示的精确解。我们证明了广泛使用的用雅可比椭圆函数求精确解的方法不适用于具有饱和非线性的非线性薛定谔方程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验